Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 97(9): 837-843, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30983394

ABSTRACT

Hemorheological properties represent significant contributors in the pathogenesis of cardiovascular diseases. As plasma vitamin C is inversely associated with blood viscosity in humans, we aimed to characterize the effect of vitamin C supplementation on hemorheology with an emphasis on erythrocyte functions. Twenty young healthy volunteers were asked to take vitamin C (1000 mg per day) for 3 weeks. We observed beneficial effect of intervention on multiple hemorheological parameters: whole blood viscosity in the range of medium to high shear rates, Casson yield stress, complex viscosity, and storage and loss moduli. As erythrocyte properties play a significant role in hemorheology, we characterized their deformability, nitric oxide production, and sodium pump activity in erythrocyte membranes. We can conclude that observed promotion in whole blood rheology may be consequence of improved erythrocyte functionality as concerns their ability to pass through narrow capillaries of the microcirculation, nitric oxide production, and sodium pump activity. Parameters reflecting oxidative stress and antioxidant status in plasma were not affected by our intervention. As improvement in hemorheology may play an important role in cardioprotection, it would be challenging to investigate the vitamin C supplementation to patients suffering from microcirculatory disturbances and worsened organ perfusion in the case of cardiovascular diseases.


Subject(s)
Ascorbic Acid/pharmacology , Dietary Supplements , Erythrocyte Deformability/drug effects , Erythrocytes/cytology , Erythrocytes/drug effects , Hemorheology/drug effects , Adult , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Female , Humans , Male , Nitric Oxide/biosynthesis , Oxidation-Reduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Young Adult
2.
Physiol Rep ; 7(3): e13969, 2019 02.
Article in English | MEDLINE | ID: mdl-30746862

ABSTRACT

Na,K-ATPase represents the key enzyme that maintains the homeostasis of sodium and potassium ions in the cells. It was documented that in directly irradiated organs the activity of this enzyme is decreased. The aim of present study was to clarify the remote effect of irradiation in mediastinal area on the activity of the Na,K-ATPase in kidneys in rats. Ionizing radiation in single dose 25 Gy resulted in consequent decrease of the body weight gain as well as the size of kidneys in Wistar rats. In addition, radiation induced alterations in the oxidative status of blood plasma. Irradiation also decreased the activity of renal Na,K-ATPase. Measurements of enzyme kinetics that were dependent on the concentration of energy substrate ATP or cofactor Na+ indicated that the lowered enzyme activity is probably a consequence of decreased number of active molecules of the enzyme, as suggested by lowered Vmax values. Immunoblot analysis confirmed the lowered expression of the catalytic alpha subunit together with decreased content of the glycosylated form of beta subunit in the renal tissue of irradiated rats. The ability of the enzyme to bind the substrate ATP, as well as Na+ was not affected, as shown by unaltered values of Km and KNa . Irradiation of the body in the mediastinal area despite protection of kidneys by lead plates during application of X-ray was followed by significant decline of activity of the renal Na,K-ATPase, what may result in deteriorated homeostasis in the organism.


Subject(s)
Gamma Rays/adverse effects , Kidney/radiation effects , Radiation Injuries/etiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Down-Regulation , Glycosylation , Kidney/enzymology , Kidney/pathology , Kinetics , Male , Mediastinum , Organs at Risk , Oxidative Stress/radiation effects , Radiation Injuries/enzymology , Radiation Injuries/pathology , Radiation Protection/instrumentation , Rats, Wistar , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL