Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Basic Res Cardiol ; 118(1): 43, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801130

ABSTRACT

Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.


Subject(s)
Myocardial Infarction , Oxytocin , Rats , Animals , Oxytocin/pharmacology , Oxytocin/metabolism , Rats, Sprague-Dawley , Hypothalamus , Myocardial Infarction/metabolism , Neurons/metabolism , Arrhythmias, Cardiac/metabolism
2.
Front Bioeng Biotechnol ; 11: 1214493, 2023.
Article in English | MEDLINE | ID: mdl-37397961

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a scalable experimental model relevant to human physiology. Oxygen consumption of hiPSC-CMs has not been studied in high-throughput (HT) format plates used in pre-clinical studies. Here, we provide comprehensive characterization and validation of a system for HT long-term optical measurements of peri-cellular oxygen in cardiac syncytia (human iPSC-CM and human cardiac fibroblasts), grown in glass-bottom 96-well plates. Laser-cut oxygen sensors having a ruthenium dye and an oxygen-insensitive reference dye were used. Ratiometric measurements (409 nm excitation) reflected dynamic changes in oxygen, as validated with simultaneous Clark electrode measurements. Emission ratios (653 nm vs. 510 nm) were calibrated for percent oxygen using two-point calibration. Time-dependent changes in the Stern-Volmer parameter, ksv, were observed during the initial 40-90 min of incubation, likely temperature-related. Effects of pH on oxygen measurements were negligible in the pH range of 4-8, with a small ratio reduction for pH > 10. Time-dependent calibration was implemented, and light exposure time was optimized (0.6-0.8 s) for oxygen measurements inside an incubator. Peri-cellular oxygen dropped to levels <5% within 3-10 h for densely-plated hiPSC-CMs in glass-bottom 96-well plates. After the initial oxygen decrease, samples either settled to low steady-state or exhibited intermittent peri-cellular oxygen dynamics. Cardiac fibroblasts showed slower oxygen depletion and higher steady-state levels without oscillations, compared to hiPSC-CMs. Overall, the system has great utility for long-term HT monitoring of peri-cellular oxygen dynamics in vitro for tracking cellular oxygen consumption, metabolic perturbations, and characterization of the maturation of hiPSC-CMs.

3.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37163022

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a scalable experimental model relevant to human physiology. Oxygen consumption of hiPSC-CMs has not been studied in high-throughput (HT) format plates used in pre-clinical studies. Here, we provide comprehensive characterization and validation of a system for HT long-term optical measurements of peri-cellular oxygen in cardiac syncytia (human iPSC-CM and human cardiac fibroblasts), grown in glass-bottom 96-well plates. Laser-cut oxygen sensors having a ruthenium dye and an oxygen-insensitive reference dye were used. Ratiometric measurements (409nm excitation) reflected dynamic changes in oxygen, as validated with simultaneous Clark electrode measurements. Emission ratios (653nm vs. 510nm) were calibrated for percent oxygen using two-point calibration. Time-dependent changes in the Stern-Volmer parameter, Ksv, were observed during the initial 40 min of incubation, likely temperature-related. Effects of pH on oxygen measurements were negligible in the pH range of 4 to 8, with a small ratio reduction for pH>10. Time-dependent calibration was implemented, and light exposure time was optimized (0.6 to 0.8s) for oxygen measurements inside an incubator. Peri-cellular oxygen dropped to levels < 5% within 3 -10 hours for densely-plated hiPSC-CMs in glass-bottom 96-well plates. After the initial oxygen decrease, samples either settled to low steady-state or exhibited intermittent peri-cellular oxygen dynamics. Cardiac fibroblasts showed slower oxygen depletion and higher steady-state levels without oscillations, compared to hiPSC-CMs. Overall, the system has great utility for long-term HT monitoring of peri-cellular oxygen dynamics in vitro for tracking cellular oxygen consumption, metabolic perturbations, and characterization of the maturation of hiPSC-CMs.

4.
Hypertension ; 80(4): 882-894, 2023 04.
Article in English | MEDLINE | ID: mdl-36794581

ABSTRACT

BACKGROUND: Obstructive sleep apnea is a prevalent and poorly treated cardiovascular disease that leads to hypertension and autonomic imbalance. Recent studies that restore cardiac parasympathetic tone using selective activation of hypothalamic oxytocin neurons have shown beneficial cardiovascular outcomes in animal models of cardiovascular disease. This study aimed to determine if chemogenetic activation of hypothalamic oxytocin neurons in animals with existing obstructive sleep apnea-induced hypertension would reverse or blunt the progression of autonomic and cardiovascular dysfunction. METHODS: Two groups of rats were exposed to chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea, for 4 weeks to induce hypertension. During an additional 4 weeks of exposure to CIH, 1 group was treated with selective activation of hypothalamic oxytocin neurons while the other group was untreated. RESULTS: Hypertensive animals exposed to CIH and treated with daily hypothalamic oxytocin neuron activation had lower blood pressure, faster heart rate recovery times after exercise, and improved indices of cardiac function compared with untreated hypertensive animals. Microarray analysis suggested that, compared with treated animals, untreated animals had gene expression profiles associated with cellular stress response activation, hypoxia-inducible factor stabilization, and myocardial extracellular matrix remodeling and fibrosis. CONCLUSIONS: In animals already presenting with CIH-induced hypertension, chronic activation of hypothalamic oxytocin neurons blunted the progression of hypertension and conferred cardioprotection after an additional 4 weeks of CIH exposure. These results have significant clinical translation for the treatment of cardiovascular disease in patients with obstructive sleep apnea.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Hypertension , Sleep Apnea, Obstructive , Rats , Animals , Oxytocin/pharmacology , Rats, Sprague-Dawley , Cardiovascular Diseases/complications , Disease Models, Animal , Sleep Apnea, Obstructive/complications , Hypoxia/metabolism , Neurons/metabolism
5.
Adv Mater Technol ; 8(10)2023 May 25.
Article in English | MEDLINE | ID: mdl-38644939

ABSTRACT

Transparent microelectrodes have received much attention from the biomedical community due to their unique advantages in concurrent crosstalk-free electrical and optical interrogation of cell/tissue activity. Despite recent progress in constructing transparent microelectrodes, a major challenge is to simultaneously achieve desirable mechanical stretchability, optical transparency, electrochemical performance, and chemical stability for high-fidelity, conformal, and stable interfacing with soft tissue/organ systems. To address this challenge, we have designed microelectrode arrays (MEAs) with gold-coated silver nanowires (Au─Ag NWs) by combining technical advances in materials, fabrication, and mechanics. The Au coating improves both the chemical stability and electrochemical impedance of the Au─Ag NW microelectrodes with only slight changes in optical properties. The MEAs exhibit a high optical transparency >80% at 550 nm, a low normalized 1 kHz electrochemical impedance of 1.2-7.5 Ω cm2, stable chemical and electromechanical performance after exposure to oxygen plasma for 5 min, and cyclic stretching for 600 cycles at 20% strain, superior to other transparent microelectrode alternatives. The MEAs easily conform to curvilinear heart surfaces for colocalized electrophysiological and optical mapping of cardiac function. This work demonstrates that stretchable transparent metal nanowire MEAs are promising candidates for diverse biomedical science and engineering applications, particularly under mechanically dynamic conditions.

6.
Nat Protoc ; 18(2): 374-395, 2023 02.
Article in English | MEDLINE | ID: mdl-36411351

ABSTRACT

Genetic engineering and implantable bioelectronics have transformed investigations of cardiovascular physiology and disease. However, the two approaches have been difficult to combine in the same species: genetic engineering is applied primarily in rodents, and implantable devices generally require larger animal models. We recently developed several miniature cardiac bioelectronic devices suitable for mice and rats to enable the advantages of molecular tools and implantable devices to be combined. Successful implementation of these device-enabled studies requires microsurgery approaches that reliably interface bioelectronics to the beating heart with minimal disruption to native physiology. Here we describe how to perform an open thoracic surgical technique for epicardial implantation of wireless cardiac pacemakers in adult rats that has lower mortality than transvenous implantation approaches. In addition, we provide the methodology for a full biocompatibility assessment of the physiological response to the implanted device. The surgical implantation procedure takes ~40 min for operators experienced in microsurgery to complete, and six to eight surgeries can be completed in 1 d. Implanted pacemakers provide programmed electrical stimulation for over 1 month. This protocol has broad applications to harness implantable bioelectronics to enable fully conscious in vivo studies of cardiovascular physiology in transgenic rodent disease models.


Subject(s)
Cardiac Surgical Procedures , Pacemaker, Artificial , Animals , Mice , Rats , Cardiac Surgical Procedures/methods
7.
Methods Mol Biol ; 2191: 309-321, 2021.
Article in English | MEDLINE | ID: mdl-32865752

ABSTRACT

Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described. An approach for perfusing hearts excised from those animals, recording the ECG to measure heart rate changes, and an illumination technique using a custom micro-LED light source to activate channelrhodopsin is explained. We have used these methods in ongoing studies of the kinetics of autonomic control of cardiac electrophysiology and contractility, demonstrating the proven utility of optogenetic technology to enable unparalleled spatiotemporal anatomic-functional probing of the intrinsic cardiac nervous system.


Subject(s)
Channelrhodopsins/genetics , Heart/physiology , Interneurons/metabolism , Optogenetics/methods , Action Potentials/genetics , Animals , Humans , Interneurons/pathology , Mice , Mice, Transgenic , Photic Stimulation/methods
8.
Sleep Med ; 74: 242-247, 2020 10.
Article in English | MEDLINE | ID: mdl-32862007

ABSTRACT

BACKGROUND: Activation of the oxytocin network has shown benefits in animal models of Obstructive Sleep Apnea (OSA) as well as other cardiorespiratory diseases. We sought to determine if nocturnal intranasal oxytocin administration could have beneficial effects in reducing the duration and/or frequency of obstructive events in obstructive sleep apnea subjects. METHODS: Two sequential standard "in-lab" polysomnogram (PSG) sleep studies were performed in patients diagnosed with OSA that were randomly assigned to initially receive either placebo or oxytocin (40 i.u.) administered intranasally in this double blinded randomized placebo controlled study. Changes in cardiorespiratory events during sleep, including apnea and hypopnea durations and frequency, risk of event-associated bradycardias, arterial oxygen desaturation and respiratory rate were assessed in 2 h epochs following sleep onset. Oxytocin significantly decreased the duration of obstructive events, as well as the oxygen desaturations and incidence of bradycardia that were associated with these events. Notably, oxytocin increased respiratory rate during non-obstructive periods. There were no significant changes in sleep architecture and no adverse effects were reported. CONCLUSIONS: Oxytocin administration can benefit OSA subjects by reducing the duration and adverse consequences of obstructive events. Oxytocin could also be beneficial in situations involving respiratory depression as oxytocin increased respiratory rate. Additional studies are needed to further understand the mechanisms by which oxytocin promotes these changes in cardiorespiratory function. The long-term efficacy and optimal dose of intranasal oxytocin treatment should also be determined in OSA subjects. ClinicalTrials.gov NCT03148899.


Subject(s)
Oxytocin , Sleep Apnea, Obstructive , Humans , Oxygen , Polysomnography , Respiratory Rate , Sleep Apnea, Obstructive/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL