Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206240

ABSTRACT

The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM+ cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.


Subject(s)
Adenocarcinoma/metabolism , Colonic Neoplasms/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Phospholipids/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/genetics , Aged , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Female , Humans , Lipidomics , Lipogenesis , Male , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
2.
Int J Mol Sci ; 20(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801289

ABSTRACT

The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.


Subject(s)
Colonic Neoplasms/enzymology , Gene Expression Regulation, Neoplastic , Lactosylceramides/metabolism , Lipid Metabolism/genetics , Sphingolipids/metabolism , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Alkaline Ceramidase/genetics , Alkaline Ceramidase/metabolism , Animals , Ceramides/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Disease Models, Animal , Humans , Lysophospholipids/metabolism , Neutral Ceramidase/genetics , Neutral Ceramidase/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Tumor Cells, Cultured
3.
J Cell Biochem ; 119(6): 4664-4679, 2018 06.
Article in English | MEDLINE | ID: mdl-29274292

ABSTRACT

Docosahexaenoic acid (DHA) and sodium butyrate (NaBt) exhibit a number of interactive effects on colon cancer cell growth, differentiation, or apoptosis; however, the molecular mechanisms responsible for these interactions and their impact on cellular lipidome are still not fully clear. Here, we show that both dietary agents together induce dynamic alterations of lipid metabolism, specific cellular lipid classes, and fatty acid composition. In HT-29 cell line, a model of differentiating colon carcinoma cells, NaBt supported incorporation of free DHA into non-polar lipids and their accumulation in cytoplasmic lipid droplets. DHA itself was not incorporated into sphingolipids; however, it significantly altered representation of individual ceramide (Cer) classes, in particular in combination with NaBt (DHA/NaBt). We observed altered expression of enzymes involved in Cer metabolism in cells treated with NaBt or DHA/NaBt, and exogenous Cer 16:0 was found to promote induction of apoptosis in differentiating HT-29 cells. NaBt, together with DHA, increased n-3 fatty acid synthesis and attenuated metabolism of monounsaturated fatty acids. Finally, DHA and/or NaBt altered expression of proteins involved in synthesis of fatty acids, including elongase 5, stearoyl CoA desaturase 1, or fatty acid synthase, with NaBt increasing expression of caveolin-1 and CD36 transporter, which may further promote DHA incorporation and its impact on cellular lipidome. In conclusion, our results indicate that interactions of DHA and NaBt exert complex changes in cellular lipidome, which may contribute to the alterations of colon cancer cell differentiation/apoptotic responses. The present data extend our knowledge about the nature of interactive effects of dietary fatty acids.


Subject(s)
Apoptosis/drug effects , Butyrates/pharmacology , Cell Differentiation/drug effects , Colonic Neoplasms/metabolism , Docosahexaenoic Acids/pharmacology , Lipid Metabolism/drug effects , Membrane Lipids/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Membrane Lipids/classification
4.
Hum Mol Genet ; 25(1): 9-23, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26494904

ABSTRACT

Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.


Subject(s)
Achondroplasia/drug therapy , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Benzamides/pharmacology , Cartilage/drug effects , Cartilage/metabolism , Catalysis/drug effects , Cells, Cultured , Chick Embryo , Chondrocytes/metabolism , Humans , Mice , Phenylurea Compounds/pharmacology , Piperazines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Syndrome
5.
Cytometry A ; 93(9): 941-951, 2018 07.
Article in English | MEDLINE | ID: mdl-28383825

ABSTRACT

The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-ß1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Biomarkers/metabolism , Epithelial-Mesenchymal Transition/physiology , Fibroblasts/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Endopeptidases , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/metabolism , Female , Humans , Leukocyte Common Antigens/metabolism , Male , PC-3 Cells , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Prostatic Neoplasms/metabolism , Transforming Growth Factor beta1/metabolism
6.
Eur J Nutr ; 56(4): 1493-1508, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26983609

ABSTRACT

PURPOSE: Although beneficial effects of the dietary n-3 docosahexaenoic acid (DHA) or butyrate in colon carcinogenesis have been implicated, the mechanisms of their action are not fully clear. Here, we investigated modulations of composition of individual phospholipid (PL) classes, with a particular emphasis on cardiolipins (CLs), in colon cells treated with DHA, sodium butyrate (NaBt), or their combination (DHA/NaBt), and we evaluated possible associations between lipid changes and cell fate after fatty acid treatment. METHODS: In two distinct human colon cell models, foetal colon (FHC) and adenocarcinoma (HCT-116) cells, we compared patterns and composition of individual PL classes following the fatty acid treatment by HPLC-MS/MS. In parallel, we measured the parameters reflecting cell proliferation, differentiation and death. RESULTS: In FHC cells, NaBt induced primarily differentiation, while co-treatment with DHA shifted their response towards cell death. In contrast, NaBt induced apoptosis in HCT-116 cells, which was not further affected by DHA. DHA was incorporated in all main PL types, increasing their unsaturation, while NaBt did not additionally modulate these effects in either cell model. Nevertheless, we identified an unusually wide range of CL species to be highly increased by NaBt and particularly by DHA/NaBt, and these effects were more pronounced in HCT-116 cells. DHA and DHA/NaBt enhanced levels of high molecular weight and more unsaturated CL species, containing DHA, which was specific for either differentiation or apoptotic responses. CONCLUSIONS: We identified a wide range of CL species in the colon cells which composition was significantly modified after DHA and NaBt treatment. These specific CL modulations might contribute to distinct cellular differentiation or apoptotic responses.


Subject(s)
Cell Differentiation/drug effects , Colon/drug effects , Docosahexaenoic Acids/pharmacology , Phospholipids/chemistry , Apoptosis/drug effects , Butyric Acid/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colon/cytology , HCT116 Cells , Humans , Tandem Mass Spectrometry
7.
Arch Toxicol ; 91(5): 2135-2150, 2017 May.
Article in English | MEDLINE | ID: mdl-27830268

ABSTRACT

Butyrate, a short-chain fatty acid produced by fermentation of dietary fiber, is an important regulator of colonic epithelium homeostasis. In this study, we investigated the impact of this histone deacetylase (HDAC) inhibitor on expression/activity of cytochrome P450 family 1 (CYP1) and on metabolism of carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP), in colon epithelial cells. Sodium butyrate (NaBt) strongly potentiated the BaP-induced expression of CYP1A1 in human colon carcinoma HCT116 cells. It also co-stimulated the 7-ethoxyresorufin-O-deethylase (EROD) activity induced by the 2,3,7,8-tetrachlorodibenzo-p-dioxin, a prototypical ligand of the aryl hydrocarbon receptor. Up-regulation of CYP1A1 expression/activity corresponded with an enhanced metabolism of BaP and formation of covalent DNA adducts. NaBt significantly potentiated CYP1A1 induction and/or metabolic activation of BaP also in other human colon cell models, colon adenoma AA/C1 cells, colon carcinoma HT-29 cells, or in NCM460D cell line derived from normal colon mucosa. Our results suggest that the effects of NaBt were due to its impact on histone acetylation, because additional HDAC inhibitors (trichostatin A and suberanilohydroxamic acid) likewise increased both the induction of EROD activity and formation of covalent DNA adducts. NaBt-induced acetylation of histone H3 (at Lys14) and histone H4 (at Lys16), two histone modifications modulated during activation of CYP1A1 transcription, and it reduced binding of HDAC1 to the enhancer region of CYP1A1 gene. This in vitro study suggests that butyrate, through modulation of histone acetylation, may potentiate induction of CYP1A1 expression, which might in turn alter the metabolism of BaP within colon epithelial cells.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Butyric Acid/pharmacology , Colon/drug effects , Cytochrome P-450 CYP1A1/metabolism , Benzo(a)pyrene/metabolism , Colon/metabolism , Cytochrome P-450 CYP1A1/genetics , DNA Adducts/drug effects , DNA Adducts/metabolism , Enhancer Elements, Genetic/drug effects , HCT116 Cells , HT29 Cells , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Inactivation, Metabolic , beta Catenin/metabolism
8.
Biochim Biophys Acta ; 1852(5): 839-50, 2015 May.
Article in English | MEDLINE | ID: mdl-25558817

ABSTRACT

Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/ß-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/ß-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/ß-catenin in suppression of chondrocyte differentiation.


Subject(s)
Cartilage/drug effects , Cell Differentiation/drug effects , Chondrocytes/drug effects , Fibroblast Growth Factors/pharmacology , Receptors, Fibroblast Growth Factor/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Blotting, Western , Cartilage/cytology , Cartilage/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , Cells, Cultured , Chondrocytes/metabolism , Drug Synergism , Fibroblast Growth Factor 2/pharmacology , HEK293 Cells , Humans , Limb Buds/drug effects , Limb Buds/embryology , Limb Buds/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Microscopy, Confocal , Models, Biological , Rats , Receptors, Fibroblast Growth Factor/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptome/drug effects , Transcriptome/genetics , Wnt Proteins/genetics , Wnt Proteins/pharmacology , Wnt3A Protein/pharmacology , beta Catenin/genetics
9.
Br J Haematol ; 175(5): 851-859, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27651098

ABSTRACT

The canonical Wnt pathway, dependent on ß-catenin-controlled transcription, is the most explored Wnt pathway, known to drive the malignant transformation of multiple cell types. Several reports have suggested that this pathway also participates in chronic lymphocytic leukaemia (CLL) pathogenesis. To get a better insight into the role of the Wnt/ß-catenin pathway in CLL we analysed in detail the expression of the most overexpressed Wnt ligand, encoded by the WNT3 gene, in a well-defined cohort of 137 CLL patients. Our analysis demonstrated that (i) untreated patients with more aggressive disease (with a notable exception of patients with 11q deletion) express less WNT3, (ii) WNT3 declines with disease progression in a significant proportion of patients and (iii) low WNT3 was identified as a strong independent marker indicating shorter treatment-free survival in CLL patients with IGHV mutation. Interestingly, CLL-related lymphoid cell lines, but not stromal cells, failed to respond to the ligand-induced activation of the Wnt/ß-catenin pathway. This opens the possibility that CLL cells use Wnt-3 to communicate with the cells in the microenvironment. We thus propose that the Wnt/ß-catenin pathway plays a more complex role in CLL pathogenesis than previously anticipated.


Subject(s)
Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Wnt3 Protein/genetics , Cell Communication , Cell Line , Cohort Studies , Disease Progression , Female , Genes, Immunoglobulin Heavy Chain/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mutation , Prognosis , Wnt Signaling Pathway
10.
Cell Mol Life Sci ; 72(12): 2445-59, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854632

ABSTRACT

Fibroblast growth factors (FGFs) deliver extracellular signals that govern many developmental and regenerative processes, but the mechanisms regulating FGF signaling remain incompletely understood. Here, we explored the relationship between intrinsic stability of FGF proteins and their biological activity for all 18 members of the FGF family. We report that FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and FGF22 exist as unstable proteins, which are rapidly degraded in cell cultivation media. Biological activity of FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, and FGF20 is limited by their instability, manifesting as failure to activate FGF receptor signal transduction over long periods of time, and influence specific cell behavior in vitro and in vivo. Stabilization via exogenous heparin binding, introduction of stabilizing mutations or lowering the cell cultivation temperature rescues signaling of unstable FGFs. Thus, the intrinsic ligand instability is an important elementary level of regulation in the FGF signaling system.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Proliferation , Chondrosarcoma/metabolism , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/metabolism , Signal Transduction , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chondrosarcoma/genetics , Chondrosarcoma/pathology , Circular Dichroism , Female , Fibroblast Growth Factors/classification , Fibroblast Growth Factors/genetics , Humans , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Protein Stability , Rats , Temperature , Tumor Cells, Cultured
11.
J Biol Chem ; 289(2): 1128-41, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24265322

ABSTRACT

ß-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/ß-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the ß-arrestin function in Wnt/ß-catenin signaling. We demonstrate that ß-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. ß-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that ß-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that ß-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIß. Importantly, cells lacking ß-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that ß-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that ß-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by ß-arrestin- and Dishevelled-associated kinases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arrestins/metabolism , Cell Membrane/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Tumor Suppressor Proteins/metabolism , Wnt3A Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Arrestins/genetics , Blotting, Western , Cells, Cultured , Dishevelled Proteins , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Mice, Knockout , Microscopy, Confocal , Minor Histocompatibility Antigens , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , RNA Interference , Tumor Suppressor Proteins/genetics , Wnt3A Protein/genetics , beta-Arrestins
12.
Biochim Biophys Acta ; 1841(9): 1308-17, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24953781

ABSTRACT

Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid present in fish oil, may exert cytotoxic and/or cytostatic effects on colon cancer cells when applied individually or in combination with some anticancer drugs. Here we demonstrate a selective ability of subtoxic doses of DHA to enhance antiproliferative and apoptotic effects of clinically useful cytokine TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in cancer but not normal human colon cells. DHA-mediated stimulation of TRAIL-induced apoptosis was associated with extensive engagement of mitochondrial pathway (Bax/Bak activation, drop of mitochondrial membrane potential, cytochrome c release), activation of endoplasmic reticulum stress response (CHOP upregulation, changes in PERK level), decrease of cellular inhibitor of apoptosis protein (XIAP, cIAP1) levels and significant changes in sphingolipid metabolism (intracellular levels of ceramides, hexosyl ceramides, sphingomyelines, sphingosines; HPLC/MS/MS). Interestingly, we found significant differences in representation of various classes of ceramides (especially C16:0, C24:1) between the cancer and normal colon cells treated with DHA and TRAIL, and suggested their potential role in the regulation of the cell response to the drug combination. These study outcomes highlight the potential of DHA for a new combination therapy with TRAIL for selective elimination of colon cancer cells via simultaneous targeting of multiple steps in apoptotic pathways.


Subject(s)
Docosahexaenoic Acids/pharmacology , Gene Expression Regulation, Neoplastic , Mitochondria/drug effects , Sphingolipids/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytochromes c/metabolism , Drug Synergism , Endoplasmic Reticulum Stress/drug effects , Humans , Inhibitor of Apoptosis Proteins , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Signal Transduction , Sphingolipids/chemistry , Sphingolipids/classification , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
13.
Mutagenesis ; 30(4): 565-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25805023

ABSTRACT

Deregulation of Wnt/ß-catenin signalling plays an important role in the pathogenesis of colorectal cancer. Interestingly, this pathway has been recently implicated in transcriptional control of cytochrome P450 (CYP) family 1 enzymes, which are responsible for bioactivation of a number of dietary carcinogens. In the present study, we investigated the impact of inhibition of Wnt/ß-catenin pathway on metabolism and genotoxicity of benzo[a]pyrene (BaP), a highly mutagenic polycyclic aromatic hydrocarbon and an efficient ligand of the aryl hydrocarbon receptor, which is known as a primary regulator of CYP1 expression, in cellular models derived from colorectal tumours. We observed that a synthetic inhibitor of ß-catenin, JW74, significantly increased formation of BaP-induced DNA adducts in both colorectal adenoma and carcinoma-derived cell lines. Using the short interfering RNA (siRNA) targeting ß-catenin, we then found that ß-catenin knockdown in HCT116 colon carcinoma cells significantly enhanced formation of covalent DNA adducts by BaP and histone H2AX phosphorylation, as detected by (32)P-postlabelling technique and immunocytochemistry, respectively, and it also induced expression of DNA damage response genes, such as CDKN1A or DDB2. The increased formation of DNA adducts formed by BaP upon ß-catenin knockdown corresponded with enhanced production of major BaP metabolites, as well as with an increased expression/activity of CYP1 enzymes. Finally, using siRNA-mediated knockdown of CYP1A1, we confirmed that this enzyme plays a major role in formation of BaP-induced DNA adducts in HCT116 cells. Taken together, the present results indicated that the siRNA-mediated inhibition of ß-catenin signalling, which is aberrantly activated in a majority of colorectal cancers, modulated genotoxicity of dietary carcinogen BaP in colon cell model in vitro, via a mechanism involving up-regulation of CYP1 expression and activity.


Subject(s)
Benzo(a)pyrene/adverse effects , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/adverse effects , DNA Damage , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , beta Catenin/antagonists & inhibitors , Apoptosis , Blotting, Western , Carcinogens, Environmental/adverse effects , Cell Proliferation , Colonic Neoplasms/drug therapy , Cytochrome P-450 CYP1A1/antagonists & inhibitors , Cytochrome P-450 CYP1A1/genetics , Humans , Immunoenzyme Techniques , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , beta Catenin/genetics , beta Catenin/metabolism
14.
Pharm Res ; 32(4): 1186-99, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25630814

ABSTRACT

PURPOSE: The aim of this work was to demonstrate an immunostimulatory and adjuvant effect of new apyrogenic lipophilic derivatives of norAbuMDP and norAbuGMDP formulated in nanoliposomes. METHODS: Nanoliposomes and metallochelating nanoliposomes were prepared by lipid film hydration and extrusion methods. The structure of the liposomal formulation was studied by electron microscopy, AF microscopy, and dynamic light scattering. Sublethal and lethal γ-irradiation mice models were used to demonstrate stimulation of innate immune system. Recombinant Hsp90 antigen (Candida albicans) bound onto metallochelating nanoliposomes was used for immunisation of mice to demonstrate adjuvant activities of tested compounds. RESULTS: Safety and stimulation of innate and adaptive immunity were demonstrated on rabbits and mice. The liposomal formulation of norAbuMDP/GMDP was apyrogenic in rabbit test and lacking any side effect in vivo. Recovery of bone marrow after sublethal γ-irradiation as well as increased survival of mice after lethal irradiation was demonstrated. Enhancement of specific immune response was demonstrated for some derivatives incorporated in metallochelating nanoliposomes with recombinant Hsp90 protein antigen. CONCLUSIONS: Liposomal formulations of new lipophilic derivatives of norAbuMDP/GMDP proved themselves as promising adjuvants for recombinant vaccines as well as immunomodulators for stimulation of innate immunity and bone-marrow recovery after chemo/radio therapy of cancer.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Drug Carriers/chemistry , Immunity, Innate/drug effects , Acetylmuramyl-Alanyl-Isoglutamine/administration & dosage , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Fungal/blood , Antigens, Fungal/immunology , Female , HSP90 Heat-Shock Proteins/immunology , Liposomes , Mice , Mice, Inbred ICR , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Nanoparticles , Rabbits , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/prevention & control , Recombinant Proteins/immunology , Survival Analysis
15.
Mol Cancer ; 13: 113, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24884804

ABSTRACT

BACKGROUND: Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis. RESULTS: In this study, we showed that NED was evoked in both androgen receptor (AR)-positive and AR-negative prostate epithelial cell lines by growing the cells to a high density. Androgen depletion and high-density cultivation were both associated with cell cycle arrest and deregulated expression of several cell cycle regulators, such as p27Kip1, members of the cyclin D protein family, and Cdk2. Dual inhibition of Cdk1 and Cdk2 using pharmacological inhibitor or RNAi led to modulation of the cell cycle and promotion of NED. We further demonstrated that the cyclic adenosine 3', 5'-monophosphate (cAMP)-mediated pathway is activated in the high-density conditions. Importantly, inhibition of cAMP signaling using a specific inhibitor of adenylate cyclase, MDL-12330A, abolished the promotion of NED by high cell density. CONCLUSIONS: Taken together, our results imply a new relationship between cell cycle attenuation and promotion of NED and suggest high cell density as a trigger for cAMP signaling that can mediate reversible NED in prostate cancer cells.


Subject(s)
Cell Transdifferentiation , Neuroendocrine Cells/pathology , Prostatic Neoplasms/pathology , Androgens/pharmacology , CDC2 Protein Kinase , Cell Count , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Transdifferentiation/drug effects , Cyclic AMP/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/metabolism , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Epithelial Cells/pathology , Humans , Immunohistochemistry , Male , Neuroendocrine Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Receptors, Androgen/metabolism , Signal Transduction/drug effects
16.
Mediators Inflamm ; 2014: 848632, 2014.
Article in English | MEDLINE | ID: mdl-24876678

ABSTRACT

Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF- α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NF κ B activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined.


Subject(s)
Colon/pathology , Fatty Acids, Unsaturated/metabolism , Inflammation/metabolism , Neoplasms/metabolism , Tumor Necrosis Factors/metabolism , Animals , Apoptosis , Butyrates/metabolism , Cytokines/metabolism , Diet , Docosahexaenoic Acids/metabolism , Humans , Intestinal Mucosa/metabolism , Mice , Mitochondria/pathology , NF-kappa B/metabolism
17.
Cytometry A ; 83(5): 472-82, 2013 May.
Article in English | MEDLINE | ID: mdl-23450810

ABSTRACT

The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples.


Subject(s)
Cell Proliferation , Colonic Neoplasms/pathology , Flow Cytometry/methods , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Tumor Stem Cell Assay/methods , AC133 Antigen , Antigens, CD/metabolism , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Survival , Colonic Neoplasms/metabolism , Glycoproteins/metabolism , Humans , Hyaluronan Receptors/metabolism , In Vitro Techniques , Integrin alpha6/metabolism , Male , Neoplastic Stem Cells/metabolism , Peptides/metabolism , Prostatic Neoplasms/metabolism
18.
Arch Toxicol ; 87(3): 491-503, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23085979

ABSTRACT

The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.


Subject(s)
Carcinogens/toxicity , Cell Communication/drug effects , Connexin 43/metabolism , Contact Inhibition/drug effects , Epithelial Cells/drug effects , Gap Junctions/drug effects , Liver/drug effects , Receptors, Aryl Hydrocarbon/agonists , Signal Transduction/drug effects , Animals , Benz(a)Anthracenes/toxicity , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Connexin 43/genetics , Dose-Response Relationship, Drug , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fluorenes/toxicity , Gap Junctions/metabolism , Gap Junctions/pathology , Gene Knockdown Techniques , Indoles/pharmacology , Ligands , Liver/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phloroglucinol/analogs & derivatives , Phloroglucinol/pharmacology , Phosphorylation , Polychlorinated Dibenzodioxins/toxicity , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Rats , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Time Factors , Transfection
19.
Carcinogenesis ; 32(1): 42-51, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21037225

ABSTRACT

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.


Subject(s)
Amantadine/analogs & derivatives , Apoptosis/drug effects , Cisplatin/pharmacology , Neoplasms/metabolism , Organoplatinum Compounds/pharmacology , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/metabolism , Amantadine/pharmacology , Apoptosis/physiology , Blotting, Western , Cell Line, Tumor , Cell Separation , Flow Cytometry , Fluorescent Antibody Technique , Humans , Microscopy, Confocal , Protein Transport/drug effects , RNA Interference , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
20.
J Biol Chem ; 285(27): 20644-53, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20439987

ABSTRACT

The FGFR3 receptor tyrosine kinase represents an attractive target for therapy due to its role in several human disorders, including skeletal dysplasias, multiple myeloma, and cervical and bladder carcinomas. By using molecular library screening, we identified a compound named NF449 with inhibitory activity toward FGFR3 signaling. In cultured chondrocytes and murine limb organ culture, NF449 rescued FGFR3-mediated extracellular matrix loss and growth inhibition, which represent two major cellular phenotypes of aberrant FGFR3 signaling in cartilage. Similarly, NF449 antagonized FGFR3 action in the multiple myeloma cell lines OPM2 and KMS11, as evidenced by NF449-mediated reversal of ERK MAPK activation and transcript accumulation of CCL3 and CCL4 chemokines, both of which are induced by FGFR3 activation. In cell-free kinase assays, NF449 inhibited the kinase activity of both wild type and a disease-associated FGFR3 mutant (K650E) in a fashion that appeared non-competitive with ATP. Our data identify NF449 as a novel antagonist of FGFR3 signaling, useful for FGFR3 inhibition alone or in combination with inhibitors that target the ATP binding site.


Subject(s)
Benzenesulfonates/pharmacology , Chondrocytes/physiology , Multiple Myeloma/physiopathology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Animals , Bone and Bones/cytology , Bone and Bones/drug effects , CHO Cells , Cell Line, Tumor , Chondrocytes/drug effects , Cricetinae , Cricetulus , Female , Humans , Mice , Protein Kinases/drug effects , Protein Kinases/metabolism , RNA/drug effects , RNA/genetics , RNA, Neoplasm/drug effects , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Sulfates/metabolism , Urinary Bladder Neoplasms/physiopathology , Uterine Cervical Neoplasms/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL