Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Virol J ; 19(1): 30, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35189916

ABSTRACT

BACKGROUND: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. METHODS: The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. RESULTS: PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. CONCLUSION: These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells.


Subject(s)
Endogenous Retroviruses , Animals , Endogenous Retroviruses/genetics , Humans , Leukocytes, Mononuclear , Proviruses/genetics , Swine , Swine, Miniature/genetics , Transplantation, Heterologous
2.
Virol J ; 16(1): 28, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30832687

ABSTRACT

BACKGROUND: HCV exhibits a high genetic diversity and is classified into 7 genotypes which are further divided into 86 confirmed subtypes. However, there are multiple isolates with unassigned subtypes. We aimed to amplify and characterize the full-length genome sequence of an HCV genotype 1 (HCV-1) divergent isolate (DE/17-0414) in Germany. METHODS: The HCV infection was detected in an HIV-1-positive German female within an HCV/HIV-coinfection study using a commercially available antigen-antibody HCV ELISA kit and confirmed by an in-house quantitative real-time RT-PCR assay. Preliminary genotyping was done by sequencing and phylogenetic analysis on partial NS5B region. The full-length genome sequence was determined by consensus RT-PCR assays. Resistance-associated substitutions (RASs) were analyzed using the web-based tool Geno2pheno[HCV]. RESULTS: Partial NS5B region of the isolate DE/17-0414 showed more than 95% identity to 73-08460349-1 l and HCV_Fr_003 from France and QC316 from Canada. Full-length genome analysis of the DE/17-0414 strain showed 91.8% identity to QC316 but less than 79.6% to other HCV-1 strains. Phylogenetic analyses demonstrated that DE/17-0414, 73-08460349-1 l, HCV_Fr_003, and QC316 formed a separate subcluster within HCV-1. DE/17-0414 had a distinct 3 amino acids insertion at the N-terminal of hypervariable region 1 (HVR1) within viral envelope glycoprotein 2 (E2) and several potential antiviral RASs among the NS3 and NS5A genes. CONCLUSIONS: We identified and analyzed an HCV-1 divergent isolate derived from an HIV-1 coinfected individual in Germany, which will be assigned to a new HCV-subtype 1o. Our understanding of the origin and transmission dynamics of this new subtype 1o requires further assessments from patients worldwide.


Subject(s)
Genetic Variation , Genotype , HIV Infections/virology , Hepacivirus/classification , Female , Genome, Viral , Germany , HIV-1 , Hepacivirus/isolation & purification , Humans , Middle Aged , Phylogeny , Sequence Analysis, DNA , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics
3.
Microorganisms ; 12(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38257925

ABSTRACT

Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients. PERVs pose a special risk in xenotransplantation, since they are part of the pig genome. When the copy number of PERVs in these animals was analyzed using droplet digital PCR and primers binding to a conserved region of the polymerase gene (PERVpol), a copy number typical for Western pigs was found. This confirms previous phylogenetic analyses of microsatellites as well as mitochondrial analyses showing a closer relationship to European pigs than to Chinese pigs. When kidney cells from very young piglets were analyzed, only around 20 PERVpol copies were detected. Using these cells as donors in somatic cell nuclear transfer (SCNT), animals were born showing PERVpol copy numbers between 35 and 56. These data indicate that Auckland Island pigs have a similar copy number in comparison with other Western pig breeds and that the copy number is higher in adult animals compared with cells from young piglets. Most importantly, PERV-C-free animals were selected and the absence of an additional eight porcine viruses was demonstrated.

4.
PLoS One ; 18(6): e0281521, 2023.
Article in English | MEDLINE | ID: mdl-37319233

ABSTRACT

Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.


Subject(s)
Betaherpesvirinae , COVID-19 , Endogenous Retroviruses , Swine , Animals , Swine, Miniature , Transplantation, Heterologous , SARS-CoV-2
5.
Virus Res ; 295: 198286, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33418025

ABSTRACT

Porcine endogenous retroviruses (PERVs) -A and -B are integrated in the genome of all pigs, whereas PERV-C is found in many, but not all pigs. Some immortalized pig cell lines, among them lymphoma cells, but also mitogen activated primary lymphocytes have been shown to release virus particles, which were able to infect human cells and some of them were recombinant PERV-A/C. Since retroviruses can induce lymphomas, two newly established pig lymphoma cell lines and an older one (L23) were analysed for PERV expression. All three lines harboured PERV-A, PERV-B and PERV-C proviruses, but PERV-A/C recombinants were found only in the genome of L23 cells. The expression at the RNA level was very low and no protein expression and particle release was observed, suggesting that PERVs were not involved in the pathogenesis of these lymphomas. However, all three cell lines were infected with the porcine lymphotropic herpesvirus-3 (PLHV-3), which may have been involved in lymphoma development.


Subject(s)
Endogenous Retroviruses , Lymphoma , Animals , Cell Line , Endogenous Retroviruses/genetics , Lymphocytes , Lymphoma/genetics , Swine , Transplantation, Heterologous
6.
Virus Res ; 294: 198295, 2021 03.
Article in English | MEDLINE | ID: mdl-33422555

ABSTRACT

Expanded potential stem cells (EPSCs) have been recently derived from porcine preimplantation embryos (Gao et al., 2019). These cells were shown to express key pluripotency genes, to be genetically stable and differentiate to derivatives of the three germ layers and additionally to trophoblast. Their molecular features and expanded potency to contribute to all embryonic and extra-embryonic cell lineages are generally not seen in the embryo-derived or induced pluripotent stem cells (iPSCs). Therefore porcine EPSCs represent a unique state of cellular potency. In the past it had been shown that human and murine embryonic stem cells (ESCs) show an increased expression of murine and human endogenous retroviruses, respectively, and retroviral expression patterns were used as markers of ESC pluripotency. An increased expression of porcine endogenous retroviruses (PERVs) was also detected in porcine iPSCs. Here we investigated 24 passages of five different clones of porcine EPSCs derived from German landrace pigs and show that they harbour PERV-A, PERV-B and PERV-C, but their expression was very low and did not change during cultivation. No recombinant PERV-A/Cs were found in these cells. The low expression despite the presence of spliced mRNA, and negative infection assay and electron microscopy results indicate that no PERV particles were released. Therefore, the absence of PERV expression seems to be a unique feature of porcine EPSCs. Most importantly, the copy number of PERV proviruses was much lower in EPSCs than in young and older pigs (29.1 copies compared with 35.8), indicating an increase in copy number during life time.


Subject(s)
Endogenous Retroviruses , Swine Diseases , Animals , Endogenous Retroviruses/genetics , Mice , Proviruses/genetics , RNA, Messenger , Stem Cells , Swine
7.
Viruses ; 12(4)2020 04 08.
Article in English | MEDLINE | ID: mdl-32276520

ABSTRACT

Porcine endogenous retroviruses (PERVs) are integrated in the genome of pigs and are transmitted like cellular genes from parents to the offspring. Whereas PERV-A and PERV-B are present in all pigs, PERV-C was found to be in many, but not all pigs. When PERV-C is present, recombination with PERV-A may happen and the PERV-A/C recombinants are characterized by a high replication rate. Until now, nothing has been known about the copy number of PERVs in wild boars and little is known about the prevalence of the phylogenetically youngest PERV-C in ancient wild boars. Here we investigated for the first time the copy number of PERVs in different populations of wild boars in and around Berlin using droplet digital PCR. Copy numbers between 3 and 69 per genome have been measured. A lower number but a higher variability was found compared to domestic pigs, including minipigs reported earlier (Fiebig et al., Xenotransplantation, 2018). The wild boar populations differed genetically and had been isolated during the existence of the Berlin wall. Despite this, the variations in copy number were larger in a single population compared to the differences between the populations. PERV-C was found in all 92 analyzed animals. Differences in the copy number of PERV in different organs of a single wild boar indicate that PERVs are also active in wild boars, replicating and infecting new cells as has been shown in domestic pigs.


Subject(s)
DNA Copy Number Variations , Endogenous Retroviruses/genetics , Proviruses/genetics , Sus scrofa/virology , Animals , Germany , Prevalence , Swine
8.
Sci Rep ; 10(1): 17531, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067513

ABSTRACT

Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.


Subject(s)
Cytomegalovirus Infections/physiopathology , Graft Survival , Heart Transplantation/adverse effects , Animals , Animals, Genetically Modified , Cytomegalovirus/classification , Cytomegalovirus Infections/transmission , Endothelial Cells , Heterografts , Immune System , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Interleukin-6/metabolism , Papio , Swine , Transplantation, Heterologous , Tumor Necrosis Factor-alpha/metabolism
9.
J Heart Lung Transplant ; 39(8): 751-757, 2020 08.
Article in English | MEDLINE | ID: mdl-32527674

ABSTRACT

BACKGROUND: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations. Recently, we reported the stepwise optimization of pig-to-baboon orthotopic cardiac xenotransplantation finally resulting in consistent success, with 4 recipients surviving 90 (n = 2), 182, and 195 days. Here, we report on 4 additional recipients, supporting the efficacy of our procedure. RESULTS: The first 2 additional recipients succumbed to porcine cytomegalovirus (PCMV) infections on Days 15 and 27, respectively. In 2 further experiments, PCMV infections were successfully avoided, and 3-months survival was achieved. Throughout all the long-term experiments, heart, liver, and renal functions remained within normal ranges. Post-mortem cardiac diameters were slightly increased when compared with that at the time of transplantation but with no detrimental effect. There were no signs of thrombotic microangiopathy. The current regimen enabled the prolonged survival and function of orthotopic cardiac xenografts in altogether 6 of 8 baboons, of which 4 were now added. These results exceed the threshold set by the Advisory Board of the International Society for Heart and Lung Transplantation. CONCLUSIONS: The results of our current and previous experimental cardiac xenotransplantations together fulfill for the first time the pre-clinical efficacy suggestions. PCMV-positive donor animals must be avoided.


Subject(s)
Graft Rejection/etiology , Heart Transplantation/methods , Tissue Donors , Animals , Graft Survival , Humans , Swine , Transplantation, Heterologous
10.
Viruses ; 12(1)2019 12 29.
Article in English | MEDLINE | ID: mdl-31905731

ABSTRACT

Xenotransplantation using pig tissues and organs is under development in order to alleviate the increasing shortage of human transplants. Since xenotransplantation may be associated with the transmission of porcine microorganisms to the human recipient, the donor pigs should be carefully analyzed, especially for the presence of potentially zoonotic viruses. Göttingen Minipigs (GöMP) are potential donors of islet cells for the treatment of diabetes. Despite the fact that all animals produced at Ellegaard Göttingen Minipigs A/S carry porcine endogenous retroviruses (PERVs) in their genome and that very few animals were infected with porcine cytomegalovirus (PCMV), hepatitis E virus (HEV) and porcine lymphotropic herpesvirus (PLHV), no transmission of these viruses was observed in a preclinical trial transplanting GöMP islet cells into cynomolgus monkeys. Using a new comprehensive strategy, we then analyzed an isolated subpopulation of Göttingen Minipigs which remained at the University of Göttingen. We concentrated on 11 xenotransplantation-relevant viruses and combined co-incubation assays with susceptible human target cells and molecular biological methods to evaluate the risk posed by PERV. All animals in Göttingen carry PERV-A, PERV-B, and PERV-C in their genome but they are not infected with PCMV, PLHV and HEV. The difference may be explained by selection of negative animals and/or de novo infection. The PERV copy number was established using ddPCR (93 copies) and a human-tropic PERV-A/C was found released from PBMCs of one animal with a high expression of PERV-C.


Subject(s)
Endogenous Retroviruses/isolation & purification , Genome, Viral , Heterografts/virology , Swine Diseases/virology , Swine, Miniature/virology , Animals , Endogenous Retroviruses/classification , Female , Gene Dosage , HEK293 Cells , Humans , Male , Swine , Swine Diseases/transmission , Transplantation, Heterologous
11.
Viruses ; 11(7)2019 07 16.
Article in English | MEDLINE | ID: mdl-31315245

ABSTRACT

Porcine circovirus 3 (PCV3) is a newly described member of the virus family Circoviridae. PCV3 is highly distributed among pigs and wild boars worldwide. A sudden introduction of PCV3 was recently observed in a herd of triple genetically modified pigs generated for xenotransplantation. These animals were used as donor pigs for orthotopic heart transplantation into baboons. In four cases, PCV3-positive hearts were transplanted, and transmission of PCV3 to the recipient was observed. PCV3 was found in all organs of the recipient baboons and a higher virus load was found in animals with a longer survival time of the transplant, indicating replication of the virus. This is the first report showing trans-species transmission of PCV3 to baboons by transplantation of a heart from a PCV3-positive donor pig. Sequence analysis showed that PCV3a and PCV3b were present in the infected pigs and were transmitted. Experiments to infect human 293 cells with PCV3 failed.


Subject(s)
Circoviridae Infections/etiology , Circoviridae Infections/transmission , Circovirus , Heart Transplantation/adverse effects , Animals , Cell Line , Circoviridae Infections/diagnosis , Circovirus/classification , Circovirus/genetics , Humans , Papio , Swine , Swine Diseases/virology , Transplantation, Heterologous/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL