Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Bioconjug Chem ; 33(9): 1750-1760, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35946495

ABSTRACT

The synthesis of radioimmunoconjugates via the stochastic attachment of bifunctional chelators to lysines can yield heterogeneous products with suboptimal in vitro and in vivo behavior. In response to this, several site-selective approaches to bioconjugation have been developed, yet each has intrinsic drawbacks, such as the need for expensive reagents or the complexity of incorporating unnatural amino acids into IgGs. Herein, we describe the use of a simple and facile approach to lysine-directed site-selective bioconjugation for the generation of radioimmunoconjugates. This strategy relies upon on the selective modification of single lysine residues within each light chain of the monoclonal antibody (mAb) with a branched azide-bearing perfluorophenyl ester (PFP-bisN3) followed by the ligation of dibenzocyclooctyne (DBCO)-bearing payloads to these bioorthogonal handles via the strain-promoted azide-alkyne cycloaddition. This methodology was used to create [89Zr]Zr-SSKDFO-pertuzumab, a radioimmunoconjugate of the HER2-targeting mAb pertuzumab labeled with desferrioxamine (DFO) and the positron-emitting radiometal zirconium-89 (89Zr). [89Zr]Zr-SSKDFO-pertuzumab was compared to a pair of analogous probes: one synthesized via random lysine modification ([89Zr]Zr-DFO-pertuzumab) and another via thiol-maleimide chemistry ([89Zr]Zr-malDFO-pertuzumab). The bioconjugation strategy was assessed using ESI mass spectrometry, SDS-PAGE, and autoradiography. All three immunoconjugates demonstrated comparable binding to HER2 via flow cytometry and surface plasmon resonance (SPR), and 89Zr-labeled variants of each were synthesized in >99% radiochemical yield and molar activities of up to ∼55.5 GBq/µmol (10 mCi/mg). Subsequently, the in vivo behavior of this trio of 89Zr-immunoPET probes was interrogated in athymic nude mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. [89Zr]Zr-SSKDFO-pertuzumab, [89Zr]Zr-malDFO-pertuzumab, and [89Zr]Zr-DFO-pertuzumab produced positron emission tomography (PET) images with high tumoral uptake and high tumor-to-healthy organ activity concentration ratios. A terminal biodistribution study complemented the PET results, revealing tumoral activity concentrations of 126.9 ± 50.3%ID/g, 86.9 ± 53.2%ID/g, and 92.5 ± 27.2%ID/g at 144 h post-injection for [89Zr]Zr-SSKDFO-pertuzumab, [89Zr]Zr-malDFO-pertuzumab, and [89Zr]Zr-DFO-pertuzumab, respectively. Taken together, the data clearly illustrate that this highly modular and facile approach to site-selective bioconjugation produces radioimmunoconjugates that are better-defined and more homogeneous than stochastically modified constructs and also exhibit excellent in vitro and in vivo performance. Furthermore, we contend that this lysine-directed strategy holds several key advantages over extant approaches to site-selective bioconjugation, especially in the context of production for the clinic.


Subject(s)
Breast Neoplasms , Immunoconjugates , Alkynes , Animals , Antibodies, Monoclonal/chemistry , Azides , Cell Line, Tumor , Chelating Agents , Deferoxamine/chemistry , Esters , Female , Humans , Immunoconjugates/chemistry , Lysine , Maleimides , Mice , Mice, Nude , Positron-Emission Tomography/methods , Sulfhydryl Compounds , Tissue Distribution , Zirconium/chemistry
2.
Front Immunol ; 14: 1067352, 2023.
Article in English | MEDLINE | ID: mdl-36798126

ABSTRACT

Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Carcinoma, Hepatocellular , Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Bile Ducts, Intrahepatic/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
4.
Cell Rep ; 36(4): 109429, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320344

ABSTRACT

Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.


Subject(s)
Neoplasms/pathology , Organoids/pathology , Precision Medicine , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Fluorescence , Genomics , HLA Antigens/genetics , Humans , Loss of Heterozygosity , Male , Middle Aged , Models, Biological , Neoplasms/genetics , Neural Networks, Computer , Transcriptome/genetics
5.
Clin Cancer Res ; 24(10): 2241-2250, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29269376

ABSTRACT

Over the last decade, many of the major solid organ cancers have seen improvements in survival due to development of novel therapeutics and corresponding biomarkers that predict treatment efficacy or resistance. In contrast, favorable outcomes remain challenging in pancreatic ductal adenocarcinoma (PDAC), in part related to the lack of validated biomarkers for patient and treatment selection and thus optimal clinical decision-making. Increasingly, however, therapeutic development for PDAC is accompanied by bioassays to evaluate response and to study mechanism of actions with a corresponding increase in the number of trials in mid to late stage with integrated biomarkers. In addition, blood-based biomarkers that provide a measure of disease activity and allow for minimally invasive tumor analyses are emerging, including circulating tumor DNA, exosomes, and circulating tumor cells. In this article, we review potential biomarkers for currently approved therapies as well as emerging biomarkers for therapeutics under development. Clin Cancer Res; 24(10); 2241-50. ©2017 AACR.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/therapy , Molecular Targeted Therapy , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/therapy , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/metabolism , Combined Modality Therapy , Drug Resistance, Neoplasm , Humans , Immunotherapy , Induction Chemotherapy , Metabolic Networks and Pathways/drug effects , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome , Pancreatic Neoplasms
6.
Chin Clin Oncol ; 6(3): 30, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28705007

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the third highest cause of cancer-related deaths in the US, and is projected to be second only to non-small cell lung cancer (NSCLC) by the 2020s. Current therapies have a modest impact on survival and median overall survival (mOS) across all stages of disease remains under a year. Over the last decade, however, great strides have been made in the understanding of PDAC pathobiology including the role of the tumor microenvironment (TME), DNA damage repair and mechanism of immunosuppression. Exciting novel therapeutics are in clinical development targeting the TME to increase cytotoxic drug delivery, decrease immunosuppressive cell presence and attack cancer stem cells (CSCs). Immune checkpoint inhibitors, cancer vaccines and other immunotherapies are actively being studied and novel combinations of targeted agents are being pursued. There is a sense of optimism in the oncology community that these scientific advances will translate into improved outcomes for patients with PDAC in the proximate future. In this review, we examine various novel therapeutics under clinical development with a focus on stromal disrupting agents, immunotherapeutics and DNA damage repair strategies.


Subject(s)
Adenocarcinoma/therapy , Carcinoma, Pancreatic Ductal/therapy , Pancreatic Neoplasms/therapy , Adenocarcinoma/mortality , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Pancreatic Ductal/mortality , DNA Damage , Humans , Immunosuppression Therapy , Immunotherapy , Lung Neoplasms/mortality , Pancreatic Neoplasms/mortality , Tumor Microenvironment
7.
Clin Ophthalmol ; 11: 279-289, 2017.
Article in English | MEDLINE | ID: mdl-28203054

ABSTRACT

Uveal melanoma (UM) is the most common intraocular malignancy and arises from melanocytes in the iris, ciliary body, or choroid. Early diagnosis and local treatment is crucial, as survival correlates with primary tumor size. However, approximately 50% of patients will develop metastatic disease with 6-12 months' survival from metastatic diagnosis. Genomic analyses have led to the development of gene-expression profiles that effectively predict metastatic progression; unfortunately, no adjuvant therapy has been shown to prolong survival to date. New insights into the molecular biology of UM have found frequent activating mutations in genes encoding for the G-protein α-subunit, GNAQ and GNA11, and improved understanding of the downstream signaling pathways MAPK, PI3K/Akt, and Hippo have afforded an array of new targets for treatment of this disease. Studies are under way with rationally developed regimens targeting these pathways, and novel agents are under development. We review the diagnosis, management, and surveillance of primary UM and the adjuvant therapy trials under way.

8.
Cancer Chemother Pharmacol ; 71(3): 663-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23370660

ABSTRACT

PURPOSE: We evaluated the efficacy and safety of capecitabine and temozolomide (CAPTEM) in patients with metastatic neuroendocrine tumors (NETs) to the liver. This regimen was based on our studies with carcinoid cell lines that showed synergistic cytotoxicity with sequence-specific dosing of 5-fluorouracil preceding temozolomide (TMZ). METHODS: A retrospective review was conducted of 18 patients with NETs metastatic to the liver who had failed 60 mg/month of Sandostatin LAR™ (100%), chemotherapy (61%), and hepatic chemoembolization (50%). Patients received capecitabine at 600 mg/m(2) orally twice daily on days 1-14 (maximum 1,000 mg orally twice daily) and TMZ 150-200 mg/m(2) divided into two doses daily on days 10-14 of a 28-day cycle. Imaging was performed every 2 cycles, and serum tumor markers were measured every cycle. RESULTS: Using RECIST parameters, 1 patient (5.5%) with midgut carcinoid achieved a surgically proven complete pathological response (CR), 10 patients (55.5%) achieved a partial response (PR), and 4 patients (22.2%) had stable disease (SD). Total response rate was 61%, and clinical benefit (responders and SD) was 83.2%. Of four carcinoid cases treated with CAPTEM, there was 1 CR, 1 PR, 1 SD, and 1 progressive disease. Median progression-free survival was 14.0 months (11.3-18.0 months). Median overall survival from diagnosis of liver metastases was 83 months (28-140 months). The only grade 3 toxicity was thrombocytopenia (11%). There were no grade 4 toxicities, hospitalizations, opportunistic infections, febrile neutropenias, or deaths. CONCLUSIONS: CAPTEM is highly active, well tolerated and may prolong survival in patients with well-differentiated, metastatic NET who have progressed on previous therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neuroendocrine Tumors/drug therapy , Adult , Aged , Antimetabolites, Antineoplastic/administration & dosage , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Capecitabine , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Disease-Free Survival , Female , Fluorouracil/administration & dosage , Fluorouracil/analogs & derivatives , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Male , Middle Aged , Neuroendocrine Tumors/pathology , Retrospective Studies , Survival Analysis , Temozolomide , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL