Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 159(4): 775-88, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417155

ABSTRACT

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Subject(s)
Neocortex/cytology , Neurogenesis , Animals , Mice , Neuroglia/metabolism , Neurons/metabolism , Otx Transcription Factors/metabolism , Staining and Labeling/methods , Stem Cells/metabolism
2.
J Cell Sci ; 133(11)2020 06 01.
Article in English | MEDLINE | ID: mdl-32295847

ABSTRACT

3D cell cultures enable the in vitro study of dynamic biological processes such as the cell cycle, but their use in high-throughput screens remains impractical with conventional fluorescent microscopy. Here, we present a screening workflow for the automated evaluation of mitotic phenotypes in 3D cell cultures by light-sheet microscopy. After sample preparation by a liquid handling robot, cell spheroids are imaged for 24 h in toto with a dual-view inverted selective plane illumination microscope (diSPIM) with a much improved signal-to-noise ratio, higher imaging speed, isotropic resolution and reduced light exposure compared to a spinning disc confocal microscope. A dedicated high-content image processing pipeline implements convolutional neural network-based phenotype classification. We illustrate the potential of our approach using siRNA knockdown and epigenetic modification of 28 mitotic target genes for assessing their phenotypic role in mitosis. By rendering light-sheet microscopy operational for high-throughput screening applications, this workflow enables target gene characterization or drug candidate evaluation in tissue-like 3D cell culture models.


Subject(s)
Image Processing, Computer-Assisted , Spheroids, Cellular , Microscopy, Fluorescence , Mitosis , Phenotype
3.
Proc Natl Acad Sci U S A ; 116(45): 22754-22763, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31628250

ABSTRACT

Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell-cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro.


Subject(s)
Mutation , Neural Stem Cells/cytology , Neurogenesis/genetics , Thyroid Hormone Receptors alpha/genetics , Adolescent , Cell Adhesion/genetics , Cell Differentiation , Cell Proliferation , Child , Female , Humans , Induced Pluripotent Stem Cells/cytology , Middle Aged
4.
Proc Natl Acad Sci U S A ; 115(4): E610-E619, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311336

ABSTRACT

The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.


Subject(s)
Lateral Ventricles/cytology , Neural Stem Cells/physiology , Stem Cell Niche , Animals , Cell Lineage , Cell Proliferation , Mice , Neurogenesis , Receptors, Tumor Necrosis Factor/metabolism , Single-Cell Analysis , Transcriptome
5.
Development ; 142(8): 1396-406, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25852198

ABSTRACT

Recent lineage-tracing studies based on inducible genetic labelling have emphasized a crucial role for stochasticity in the maintenance and regeneration of cycling adult tissues. These studies have revealed that stem cells are frequently lost through differentiation and that this is compensated for by the duplication of neighbours, leading to the consolidation of clonal diversity. Through the combination of long-term lineage-tracing assays with short-term in vivo live imaging, the cellular basis of this stochastic stem cell loss and replacement has begun to be resolved. With a focus on mammalian spermatogenesis, intestinal maintenance and the hair cycle, we review the role of dynamic heterogeneity in the regulation of adult stem cell populations.


Subject(s)
Stem Cells/cytology , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Lineage , Female , Humans , Intestines/cytology , Male , Spermatogenesis/physiology , Stem Cells/metabolism
6.
J Exp Clin Cancer Res ; 41(1): 312, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273171

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are considered to play a fundamental role in pancreatic ductal adenocarcinoma (PDAC) progression and chemoresistance. Patient-derived organoids have demonstrated great potential as tumor avatars for drug response prediction in PDAC, yet they disregard the influence of stromal components on chemosensitivity. METHODS: We established direct three-dimensional (3D) co-cultures of primary PDAC organoids and patient-matched CAFs to investigate the effect of the fibroblastic compartment on sensitivity to gemcitabine, 5-fluorouracil and paclitaxel treatments using an image-based drug assay. Single-cell RNA sequencing was performed for three organoid/CAF pairs in mono- and co-culture to uncover transcriptional changes induced by tumor-stroma interaction. RESULTS: Upon co-culture with CAFs, we observed increased proliferation and reduced chemotherapy-induced cell death of PDAC organoids. Single-cell RNA sequencing data evidenced induction of a pro-inflammatory phenotype in CAFs in co-cultures. Organoids showed increased expression of genes associated with epithelial-to-mesenchymal transition (EMT) in co-cultures and several potential receptor-ligand interactions related to EMT were identified, supporting a key role of CAF-driven induction of EMT in PDAC chemoresistance. CONCLUSIONS: Our results demonstrate the potential of personalized PDAC co-cultures models not only for drug response profiling but also for unraveling the molecular mechanisms involved in the chemoresistance-supporting role of the tumor stroma.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Coculture Techniques , Organoids/metabolism , Drug Resistance, Neoplasm , Patient-Specific Modeling , Ligands , Stromal Cells/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cancer-Associated Fibroblasts/metabolism , Paclitaxel/pharmacology , Fluorouracil/pharmacology , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms
7.
Nat Commun ; 12(1): 5826, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611171

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality by 2030. Bulk transcriptomic analyses have distinguished 'classical' from 'basal-like' tumors with more aggressive clinical behavior. We derive PDAC organoids from 18 primary tumors and two matched liver metastases, and show that 'classical' and 'basal-like' cells coexist in individual organoids. By single-cell transcriptome analysis of PDAC organoids and primary PDAC, we identify distinct tumor cell states shared across patients, including a cycling progenitor cell state and a differentiated secretory state. Cell states are connected by a differentiation hierarchy, with 'classical' cells concentrated at the endpoint. In an imaging-based drug screen, expression of 'classical' subtype genes correlates with better drug response. Our results thus uncover a functional hierarchy of PDAC cell states linked to transcriptional tumor subtypes, and support the use of PDAC organoids as a clinically relevant model for in vitro studies of tumor heterogeneity.


Subject(s)
Organoids/metabolism , Single-Cell Analysis/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans
8.
Cancers (Basel) ; 13(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806447

ABSTRACT

Intra-tumor heterogeneity of tumor-initiating cell (TIC) activity drives colorectal cancer (CRC) progression and therapy resistance. Here, we used single-cell RNA-sequencing of patient-derived CRC models to decipher distinct cell subpopulations based on their transcriptional profiles. Cell type-specific expression modules of stem-like, transit amplifying-like, and differentiated CRC cells resemble differentiation states of normal intestinal epithelial cells. Strikingly, identified subpopulations differ in proliferative activity and metabolic state. In summary, we here show at single-cell resolution that transcriptional heterogeneity identifies functional states during TIC differentiation. Furthermore, identified expression signatures are linked to patient prognosis. Targeting transcriptional states associated to cancer cell differentiation might unravel novel vulnerabilities in human CRC.

9.
Nat Biotechnol ; 39(6): 705-716, 2021 06.
Article in English | MEDLINE | ID: mdl-33361824

ABSTRACT

In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.


Subject(s)
COVID-19 Drug Treatment , Chemokine CCL3/genetics , Chemokine CCL4/genetics , Hypertension/drug therapy , Receptors, CCR1/genetics , Adult , Angiotensin Receptor Antagonists/administration & dosage , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/complications , COVID-19/genetics , COVID-19/virology , Disease Progression , Female , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypertension/genetics , Hypertension/pathology , Inflammation/complications , Inflammation/drug therapy , Inflammation/genetics , Inflammation/virology , Male , Middle Aged , RNA-Seq , Respiratory System/drug effects , Respiratory System/pathology , Respiratory System/virology , Risk Factors , SARS-CoV-2/pathogenicity , Single-Cell Analysis
10.
Neuro Oncol ; 22(8): 1138-1149, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32297954

ABSTRACT

BACKGROUND: Glioblastoma (GBM) consists of devastating neoplasms with high invasive capacity, which have been difficult to study in vitro in a human-derived model system. Therapeutic progress is also limited by cellular heterogeneity within and between tumors, among other factors such as therapy resistance. To address these challenges, we present an experimental model using human cerebral organoids as a scaffold for patient-derived GBM cell invasion. METHODS: This study combined tissue clearing and confocal microscopy with single-cell RNA sequencing of GBM cells before and after co-culture with organoid cells. RESULTS: We show that tumor cells within organoids extend a network of long microtubes, recapitulating the in vivo behavior of GBM. Transcriptional changes implicated in the invasion process are coherent across patient samples, indicating that GBM cells reactively upregulate genes required for their dispersion. Potential interactions between GBM and organoid cells identified by an in silico receptor-ligand pairing screen suggest functional therapeutic targets. CONCLUSIONS: Taken together, our model has proven useful for studying GBM invasion and transcriptional heterogeneity in vitro, with applications for both pharmacological screens and patient-specific treatment selection on a time scale amenable to clinical practice.


Subject(s)
Brain Neoplasms , Glioblastoma , Organoids , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Organoids/pathology , Transcriptome , Tumor Cells, Cultured
11.
Sci Rep ; 9(1): 12367, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451731

ABSTRACT

Patient-derived 3D cell culture systems are currently advancing cancer research since they potentiate the molecular analysis of tissue-like properties and drug response under well-defined conditions. However, our understanding of the relationship between the heterogeneity of morphological phenotypes and the underlying transcriptome is still limited. To address this issue, we here introduce "pheno-seq" to directly link visual features of 3D cell culture systems with profiling their transcriptome. As prototypic applications breast and colorectal cancer (CRC) spheroids were analyzed by pheno-seq. We identified characteristic gene expression signatures of epithelial-to-mesenchymal transition that are associated with invasive growth behavior of clonal breast cancer spheroids. Furthermore, we linked long-term proliferative capacity in a patient-derived model of CRC to a lowly abundant PROX1-positive cancer stem cell subtype. We anticipate that the ability to integrate transcriptome analysis and morphological patho-phenotypes of cancer cells will provide novel insight on the molecular origins of intratumor heterogeneity.


Subject(s)
Cell Culture Techniques/methods , Gene Expression Regulation, Neoplastic , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Lineage/genetics , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Genes, Neoplasm , Humans , Neoplastic Stem Cells/pathology , Phenotype , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL