Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 117(24): 13659-13669, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482872

ABSTRACT

T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -ß chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3ß, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3ß features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.


Subject(s)
Complementarity Determining Regions/immunology , Histocompatibility Antigens Class II/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Tuberculosis/genetics , Alleles , Animals , CD4-Positive T-Lymphocytes/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Histocompatibility Antigens Class II/genetics , Humans , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Spleen/immunology , T-Lymphocytes, Regulatory/chemistry , Tuberculosis/immunology
2.
Front Immunol ; 15: 1380971, 2024.
Article in English | MEDLINE | ID: mdl-38799462

ABSTRACT

Mycobacterium tuberculosis (Mtb) remains a major threat worldwide, although only a fraction of infected individuals develops tuberculosis (TB). TB susceptibility is shaped by multiple genetic factors, and we performed comparative immunological analysis of two mouse strains to uncover relevant mechanisms underlying susceptibility and resistance. C57BL/6 mice are relatively TB-resistant, whereas I/St mice are prone to develop severe TB, partly due to the MHC-II allelic variant that shapes suboptimal CD4+ T cell receptor repertoire. We investigated the repertoires of lung-infiltrating helper T cells and B cells at the progressed stage in both strains. We found that lung CD4+ T cell repertoires of infected C57BL/6 but not I/St mice contained convergent TCR clusters with functionally confirmed Mtb specificity. Transcriptomic analysis revealed a more prominent Th1 signature in C57BL/6, and expression of pro-inflammatory IL-16 in I/St lung-infiltrating helper T cells. The two strains also showed distinct Th2 signatures. Furthermore, the humoral response of I/St mice was delayed, less focused, and dominated by IgG/IgM isotypes, whereas C57BL/6 mice generated more Mtb antigen-focused IgA response. We conclude that the inability of I/St mice to produce a timely and efficient anti-Mtb adaptive immune responses arises from a suboptimal helper T cell landscape that also impacts the humoral response, leading to diffuse inflammation and severe disease.


Subject(s)
Adaptive Immunity , Genetic Predisposition to Disease , Mice, Inbred C57BL , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Mycobacterium tuberculosis/immunology , Adaptive Immunity/genetics , Tuberculosis/immunology , Tuberculosis/genetics , Lung/immunology , Lung/pathology , B-Lymphocytes/immunology , Disease Models, Animal , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
3.
Elife ; 122023 Jul 13.
Article in English | MEDLINE | ID: mdl-37440306

ABSTRACT

Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.


Subject(s)
Cytomegalovirus , Muromegalovirus , Mice , Animals , Interleukin-10 , CD4-Positive T-Lymphocytes , Arginase/genetics , Muromegalovirus/physiology
4.
Front Immunol ; 12: 697307, 2021.
Article in English | MEDLINE | ID: mdl-34489944

ABSTRACT

The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.


Subject(s)
Agammaglobulinemia/immunology , Genetic Diseases, X-Linked/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Agammaglobulinemia/genetics , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Case-Control Studies , Complementarity Determining Regions/genetics , Genes, T-Cell Receptor beta , Genetic Diseases, X-Linked/genetics , Humans , Immunosenescence/genetics , Immunosenescence/immunology , Male , Memory T Cells/immunology , Middle Aged , Models, Immunological , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL