Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
FASEB J ; 37(2): e22772, 2023 02.
Article in English | MEDLINE | ID: mdl-36645117

ABSTRACT

Circadian disruption (CD) is the consequence of a mismatch between endogenous circadian rhythms and behavior, and frequently occurs in shift workers. CD has often been linked to impairment of glucose and lipid homeostasis. It is, however, unknown if these effects are sex dependent. Here, we subjected male and female C57BL/6J mice to 6-h light phase advancements every 3 days to induce CD and assessed glucose and lipid homeostasis. Within this model, we studied the involvement of gonadal sex hormones by injecting mice with gonadotropin-releasing hormone-antagonist degarelix. We demonstrate that CD has sex-specific effects on glucose homeostasis, as CD elevated fasting insulin levels in male mice while increasing fasting glucose levels in female mice, which appeared to be independent of behavior, food intake, and energy expenditure. Absence of gonadal sex hormones lowered plasma insulin levels in male mice subjected to CD while it delayed glucose clearance in female mice subjected to CD. CD elevated plasma triglyceride (TG) levels and delayed plasma clearance of TG-rich lipoproteins in both sexes, coinciding with reduced TG-derived FA uptake by adipose tissues. Absence of gonadal sex hormones did not notably alter the effects of CD on lipid metabolism. We conclude that CD causes sex-dependent effects on glucose metabolism, as aggravated by male gonadal sex hormones and partly rescued by female gonadal sex hormones. Future studies on CD should consider the inclusion of both sexes, which may eventually contribute to personalized advice for shift workers.


Subject(s)
Gonadal Steroid Hormones , Insulins , Mice , Male , Female , Animals , Mice, Inbred C57BL , Homeostasis , Glucose/metabolism , Circadian Rhythm , Insulins/pharmacology
2.
FASEB J ; 36(4): e22251, 2022 04.
Article in English | MEDLINE | ID: mdl-35262955

ABSTRACT

Glucocorticoids exert their pleiotropic effects by activating the glucocorticoid receptor (GR), which is expressed throughout the body. GR-mediated transcription is regulated by a multitude of tissue- and cell type-specific mechanisms, including interactions with other transcription factors such as the androgen receptor (AR). We previously showed that the transcription of canonical glucocorticoid-responsive genes is dependent on active androgen signaling, but the extent of this glucocorticoid-androgen crosstalk warrants further investigation. In this study, we investigated the overall glucocorticoid-androgen crosstalk in the hepatic transcriptome. Male mice were exposed to GR agonist corticosterone and AR antagonist enzalutamide in order to determine the extent of androgen-dependency after acute and chronic exposure. We found that a substantial proportion of the hepatic transcriptome is androgen-dependent after chronic exposure, while after acute exposure the transcriptomic effects of glucocorticoids are largely androgen-independent. We propose that prolonged glucocorticoid exposure triggers a gradual upregulation of AR expression, instating a situation of androgen dependence which is likely not driven by direct AR-GR interactions. This indirect mode of glucocorticoid-androgen interaction is in accordance with the absence of enriched AR DNA-binding near AR-dependent corticosterone-regulated genes after chronic exposure. In conclusion, we demonstrate that glucocorticoid effects and their interaction with androgen signaling are dependent on the duration of exposure and believe that our findings contribute to a better understanding of hepatic glucocorticoid biology in health and disease.


Subject(s)
Androgens , Glucocorticoids , Androgens/metabolism , Androgens/pharmacology , Animals , Corticosterone/pharmacology , Gene Expression Regulation , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Male , Mice , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
3.
Stress ; 26(1): 2275210, 2023 11.
Article in English | MEDLINE | ID: mdl-37874158

ABSTRACT

Glucocorticoid hormones are essential for health, but overexposure may lead to many detrimental effects, including metabolic, psychiatric, and bone disease. These effects may not only be due to increased overall exposure to glucocorticoids, but also to elevated hormone levels at the time of the physiological circadian trough of glucocorticoid levels. The late Mary Dallman developed a model that allows the differentiation between the effects of overall 24-hour glucocorticoid overexposure and the effects of a lack of circadian rhythmicity. For this, she continuously treated rats with a low dose of corticosterone (or "B"), which leads to a constant hormone level, without 24-hour overexposure using subcutaneously implanted pellets. The data from this "B-flat" model suggest that even modest elevations of glucocorticoid signaling during the time of the normal circadian trough of hormone secretion are a substantial contributor to the negative effects of glucocorticoids on health.


Subject(s)
Glucocorticoids , Stress, Psychological , Female , Rats , Animals , Glucocorticoids/metabolism , Corticosterone/metabolism , Signal Transduction , Circadian Rhythm/physiology , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism
4.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613751

ABSTRACT

Angelman Syndrome (AS) is a severe neurodevelopmental disorder, caused by the neuronal absence of the ubiquitin protein ligase E3A (UBE3A). UBE3A promotes ubiquitin-mediated protein degradation and functions as a transcriptional coregulator of nuclear hormone receptors, including the glucocorticoid receptor (GR). Previous studies showed anxiety-like behavior and hippocampal-dependent memory disturbances in AS mouse models. Hippocampal GR is an important regulator of the stress response and memory formation, and we therefore investigated whether the absence of UBE3A in AS mice disrupted GR signaling in the hippocampus. We first established a strong cortisol-dependent interaction between the GR ligand binding domain and a UBE3A nuclear receptor box in a high-throughput interaction screen. In vivo, we found that UBE3A-deficient AS mice displayed significantly more variation in circulating corticosterone levels throughout the day compared to wildtypes (WT), with low to undetectable levels of corticosterone at the trough of the circadian cycle. Additionally, we observed an enhanced transcriptomic response in the AS hippocampus following acute corticosterone treatment. Surprisingly, chronic corticosterone treatment showed less contrast between AS and WT mice in the hippocampus and liver transcriptomic responses. This suggests that UBE3A limits the acute stimulation of GR signaling, likely as a member of the GR transcriptional complex. Altogether, these data indicate that AS mice are more sensitive to acute glucocorticoid exposure in the brain compared to WT mice. This suggests that stress responsiveness is altered in AS which could lead to anxiety symptoms.


Subject(s)
Angelman Syndrome , Mice , Animals , Angelman Syndrome/genetics , Angelman Syndrome/metabolism , Corticosterone/metabolism , Hippocampus/metabolism , Brain/metabolism , Neurons/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Ubiquitin-Protein Ligases/metabolism , Disease Models, Animal
5.
FASEB J ; 34(1): 1052-1064, 2020 01.
Article in English | MEDLINE | ID: mdl-31914701

ABSTRACT

The past decade, it has become evident that circadian rhythms within metabolically active tissues are very important for physical health. However, although shift work has also been associated with an increased risk of fractures, circadian rhythmicity has not yet been extensively studied in bone. Here, we investigated which genes are rhythmically expressed in bone, and whether circadian disruption by shifts in light-dark cycle affects bone turnover and structure in mice. Our results demonstrate diurnal expression patterns of clock genes (Rev-erbα, Bmal1, Per1, Per2, Cry1, Clock), as well as genes involved in osteoclastogenesis, osteoclast proliferation and function (Rankl, Opg, Ctsk), and osteocyte function (c-Fos) in bone. Weekly alternating light-dark cycles disrupted rhythmic clock gene expression in bone and caused a reduction in plasma levels of procollagen type 1 amino-terminal propeptide (P1NP) and tartrate-resistant acidic phosphatase (TRAP), suggestive of a reduced bone turnover. These effects coincided with an altered trabecular bone structure and increased cortical mineralization after 15 weeks of light-dark cycles, which may negatively affect bone strength in the long term. Collectively, these results show that a physiological circadian rhythm is important to maintain bone health, which stresses the importance of further investigating the association between shift work and skeletal disorders.


Subject(s)
Bone Density , Bone and Bones/physiology , Circadian Rhythm , Gene Expression Regulation , Light , ARNTL Transcription Factors/metabolism , Animals , Behavior, Animal , CLOCK Proteins/metabolism , Cathepsin K/metabolism , Circadian Clocks , Cryptochromes/metabolism , Female , Lipids/chemistry , Mice , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Osteogenesis , Osteoprotegerin/metabolism , Period Circadian Proteins/metabolism , Photoperiod , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/metabolism , X-Ray Microtomography
6.
Pharmacol Res ; 168: 105588, 2021 06.
Article in English | MEDLINE | ID: mdl-33798733

ABSTRACT

Glucocorticoids regulate numerous processes in human physiology, but deregulated or excessive glucocorticoid receptor (GR) signaling contributes to the development of various pathologies including metabolic syndrome. For this reason, GR antagonists have considerable therapeutic value. Yet, the only GR antagonist that is clinically approved to date - mifepristone - exhibits cross-reactivity with other nuclear steroid receptors like the progesterone receptor. In this study, we set out to identify novel selective GR antagonists by combining rational chemical design with an unbiased in vitro and in vivo screening approach. Using this pipeline, we were able to identify CORT125329 as the compound with the best overall profile from our octahydro series of novel GR antagonists, and demonstrated that CORT125329 does not exhibit cross-reactivity with the progesterone receptor. Further in vivo testing showed beneficial activities of CORT125329 in models for excessive corticosterone exposure and short- and long-term high-fat diet-induced metabolic complications. Upon CORT125329 treatment, most metabolic parameters that deteriorated upon high-fat diet feeding were similarly improved in male and female mice, confirming activity in both sexes. However, some sexually dimorphic effects were observed including male-specific antagonism of GR activity in brown adipose tissue and female-specific lipid lowering activities after short-term CORT125329 treatment. Remarkably, CORT125329 exhibits beneficial metabolic effects despite its lack of GR antagonism in white adipose tissue. Rather, we propose that CORT125329 treatment restores metabolic activity in brown adipose tissue by stimulating lipolysis, mitochondrial activity and thermogenic capacity. In summary, we have identified CORT125329 as a selective GR antagonist with strong beneficial activities in metabolic disease models, paving the way for further clinical investigation.


Subject(s)
Metabolic Diseases/drug therapy , Receptors, Glucocorticoid/antagonists & inhibitors , Adipose Tissue, Brown/drug effects , Animals , Diet, High-Fat , Drug Design , Drug Development , Female , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL
7.
Int J Mol Sci ; 22(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567533

ABSTRACT

Transformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy. In a high-throughput assay based on E-cadherin (re)induction and the inhibition of tumor cell invasion, 44,475 low molecular weight (LMW) compounds were screened. The screening resulted in the identification of candidate compounds from the PROAM02 class. Selected LMW compounds activated E-cadherin promoter activity and inhibited cancer cell invasion in multiple metastatic human cancer cell lines. The intraperitoneal administration of selected LMW compounds reduced the tumor burden in human prostate and breast cancer in vivo mouse models. Moreover, selected LMW compounds decreased the intra-bone growth of xenografted human prostate cancer cells. This study describes the identification of the PROAM02 class of small molecules that can be exploited to reduce cancer cell invasion and metastases. Further clinical evaluation of selected candidate inhibitors is warranted to address their safety, bioavailability and antitumor efficacy in the management of patients with aggressive cancers.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Drug Discovery , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms/pathology , Small Molecule Libraries/pharmacology , Animals , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Neuroendocrinology ; 109(3): 266-276, 2019.
Article in English | MEDLINE | ID: mdl-30884490

ABSTRACT

Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.


Subject(s)
Brain/metabolism , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Humans
9.
EMBO J ; 33(23): 2814-28, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25361605

ABSTRACT

IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.


Subject(s)
Apoptosis/physiology , I-kappa B Proteins/metabolism , Mitochondrial Membranes/physiology , Models, Biological , NF-kappa B/metabolism , Animals , Blotting, Western , Cell Line , Cytochromes c/metabolism , Female , Flow Cytometry , Hexokinase/metabolism , Humans , Immunoprecipitation , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Mitochondrial Membranes/metabolism , NF-KappaB Inhibitor alpha , Oligonucleotides/genetics , Voltage-Dependent Anion Channel 1/metabolism , Xenograft Model Antitumor Assays
10.
Prostate ; 75(8): 815-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25663076

ABSTRACT

BACKGROUND: The inflammatory tumor microenvironment, and more specifically the tumor-associated macrophages, plays an essential role in the development and progression of prostate cancer towards metastatic bone disease. Tumors are often characterized by a leaky vasculature, which - combined with the prolonged circulation kinetics of liposomes - leads to efficient tumor localization of these drug carriers, via the so-called enhanced permeability and retention (EPR) -effect. In this study, we evaluated the utility of targeted, liposomal drug delivery of the glucocorticoid dexamethasone in a model of prostate cancer bone metastases. METHODS: Tumor-bearing Balb-c nu/nu mice were treated intravenously with 0.2-1.0-5.0 mg/kg/week free- and liposomal DEX for 3-4 weeks and tumor growth was monitored by bioluminescent imaging. RESULTS: Intravenously administered liposomes localize efficiently to bone metastases in vivo and treatment of established bone metastases with (liposomal) dexamethasone resulted in a significant inhibition of tumor growth up to 26 days after initiation of treatment. Furthermore, 1.0 mg/kg liposomal dexamethasone significantly outperformed 1.0 mg/kg free dexamethasone, and was found to be well-tolerated at clinically-relevant dosages that display potent anti-tumor efficacy. CONCLUSIONS: Liposomal delivery of the glucocorticoid dexamethasone inhibits the growth of malignant bone lesions. We believe that liposomal encapsulation of dexamethasone offers a promising new treatment option for advanced, metastatic prostate cancer which supports further clinical evaluation.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Bone Neoplasms/prevention & control , Bone Neoplasms/secondary , Dexamethasone/administration & dosage , Drug Delivery Systems/methods , Prostatic Neoplasms/drug therapy , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Humans , Liposomes , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/pathology , Rats , Rats, Sprague-Dawley
11.
Life Sci ; 357: 123080, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332486

ABSTRACT

OBJECTIVE: Endogenous glucocorticoid levels display a strong circadian rhythm, which is often not considered when synthetic glucocorticoids are prescribed as anti-inflammatory drugs. In this study we evaluated the effect timing of glucocorticoid administration, i.e. in-phase (administered when endogenous glucocorticoid levels are high) versus out-of-phase (administered when endogenous glucocorticoid levels are low). We investigated the synthetic glucocorticoid betamethasone - which is extensively used in the clinic - and monitored the development of common metabolic side effects in mice upon prolonged treatment, with a particular focus on glucose metabolism. METHODS: Male and female C57BL/6J mice were treated with the synthetic glucocorticoid betamethasone in-phase and out-of-phase, and the development of metabolic side effects was monitored. RESULTS: We observed that, compared with in-phase treatment, out-of-phase treatment with betamethasone results in hyperinsulinemia in both male and female C57BL/6J mice. We additionally found that out-of-phase betamethasone treatment strongly reduced insulin sensitivity as compared to in-phase administration during morning measurements. Our study shows that the adverse effects of betamethasone are dependent on the time of treatment with generally less side effects on glucose metabolism with in-phase treatment. CONCLUSIONS: This study highlights differences in glucocorticoid outcome based on the time of measurement, advocating that potential circadian variation should be taken into account when studying glucocorticoid biology.

12.
Endocrinology ; 165(10)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39240718

ABSTRACT

Biological sex affects the activity of the hypothalamus-pituitary-adrenal (HPA) axis. However, how androgen deprivation affects this axis remains largely unknown. In this study, we investigated the effect of androgen status on different components of the HPA axis in male mice. Two weeks of androgen deprivation did not affect total plasma corticosterone levels but led to increased pituitary ACTH levels. Stress-induced total plasma corticosterone levels were increased, whereas the suppression of corticosterone after dexamethasone treatment under basal conditions was attenuated. Androgen-deprived mice displayed a 2-fold increase in plasma levels of corticosteroid binding globulin (CBG). A similar increase in CBG was observed in global androgen receptor knock-out animals, compared to wild-type littermates. Androgen deprivation was associated with a 6-fold increase in CBG mRNA in the liver and enhanced transcriptional activity at CBG regulatory regions, as evidenced by increased H3K27 acetylation. We propose that the induction of CBG as a consequence of androgen deprivation, together with the unaltered total corticosterone levels, results in lower free corticosterone levels in plasma. This is further supported by mRNA levels of androgen-independent GR target genes in the liver. The reduction in negative feedback on the HPA axis under basal condition would suffice to explain the enhanced stress reactivity after androgen deprivation. Overall, our data demonstrate that, in mice, tonic androgen receptor activation affects CBG levels in conjunction with effects on gene expression and HPA-axis reactivity.


Subject(s)
Androgens , Corticosterone , Hypothalamo-Hypophyseal System , Mice, Knockout , Pituitary-Adrenal System , Transcortin , Animals , Male , Transcortin/metabolism , Transcortin/genetics , Mice , Corticosterone/blood , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Androgens/blood , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Stress, Physiological/drug effects , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice, Inbred C57BL , Liver/metabolism , Liver/drug effects , Adrenocorticotropic Hormone/blood , Dexamethasone/pharmacology
13.
Exp Neurol ; 374: 114675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216109

ABSTRACT

Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.


Subject(s)
Huntington Disease , Isoquinolines , Neurodegenerative Diseases , Pyrazoles , Animals , Female , Humans , Male , Mice , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/complications , Huntington Disease/drug therapy , Huntington Disease/genetics , Receptors, Glucocorticoid
14.
Eur J Pharmacol ; 957: 176012, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634839

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.


Subject(s)
Non-alcoholic Fatty Liver Disease , Receptors, Glucocorticoid , Female , Male , Animals , Mice , Mifepristone/pharmacology , Mifepristone/therapeutic use , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Cholesterol
15.
Front Endocrinol (Lausanne) ; 14: 1292024, 2023.
Article in English | MEDLINE | ID: mdl-38303978

ABSTRACT

Glucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid treatment in white and brown adipocytes and in the liver. In the brain, we observed that chronic hypercorticism induced changes in gene expression that tended to be more pronounced in male mice. In the present study, we investigated if glucocorticoid signaling in the brain could be modulated by androgen. After chronic treatment with corticosterone, dihydrotestosterone, a combination of both, and corticosterone in combination with the AR antagonist enzalutamide, we compared the expression of glucocorticoid receptor (NR3C1, also abbreviated GR) target genes in brain regions where AR and GR are co-expressed, namely: prefrontal cortex, hypothalamus, hippocampus, ventral tegmental area and substantia nigra. We observed that androgen affected glucocorticoid signaling only in the prefrontal cortex and the substantia nigra. Dihydrotestosterone and corticosterone independently and inversely regulated expression of Sgk1 and Tsc22d3 in prefrontal cortex. AR antagonism with enzalutamide attenuated corticosterone-induced expression of Fkbp5 in the prefrontal cortex and of Fkbp5 and Sgk1 in the substantia nigra. Additionally, in the substantia nigra, AR antagonism increased expression of Th and Slc18a1, two genes coding for key components of the dopaminergic system. Our data indicate that androgen influence over glucocorticoid stimulation in the brain is not a dominant phenomenon in the context of high corticosterone levels, but can occur in the prefrontal cortex and substantia nigra.


Subject(s)
Androgens , Benzamides , Glucocorticoids , Nitriles , Phenylthiohydantoin , Male , Mice , Animals , Glucocorticoids/pharmacology , Androgens/pharmacology , Corticosterone , Dihydrotestosterone/pharmacology , Mesencephalon , Prefrontal Cortex
16.
J Endocr Soc ; 8(1): bvad162, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38169733

ABSTRACT

Context: Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with obesity, insulin resistance, and dyslipidemia. Hyperandrogenism is a major characteristic of PCOS. Increased androgen exposure is believed to deregulate metabolic processes in various tissues as part of the PCOS pathogenesis, predominantly through the androgen receptor (AR). Notably, various metabolic features in PCOS are similar to those observed after excess glucocorticoid exposure. Objective: We hypothesized that glucocorticoid receptor (GR) signaling is involved in the metabolic symptoms of PCOS. Methods: In a PCOS model of chronic dihydrotestosterone (DHT) exposure in female mice, we investigated whether GR signaling machinery was (de)regulated, and if treatment with a selective GR antagonist alleviated the metabolic symptoms. Results: We observed an upregulation of GR messenger RNA expression in the liver after DHT exposure. In white adipose tissues and liver we found that DHT upregulated Hsd11b1, which encodes for the enzyme that converts inactive into active glucocorticoids. We found that preventive but not therapeutic administration of a GR antagonist alleviated DHT-induced hyperglycemia and restored glucose tolerance. We did not observe strong effects of GR antagonism in DHT-exposed mice on other features like total fat mass and lipid accumulation in various tissues. Conclusion: We conclude that GR activation may play a role in glucose metabolism in DHT-exposed mice.

17.
Lab Anim ; 57(5): 541-551, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37066741

ABSTRACT

The collagen antibody-induced arthritis (CAIA) model is highly effective in inducing arthritis, making it an attractive model for screening therapeutic compounds such as glucocorticoids (GCs). The severity of discomfort in this model makes it desirable to administer analgesics, but it is a prerequisite that these do not interfere with the model or tested therapeutics. In the present study, we studied the effect of 1 mg/mL tramadol and 3.5 mg/mL paracetamol (TP) on CAIA in male BALB/cAnNCrl mice and the possible interference of TP analgesia with the activity of the GC drug prednisolone (Pred). Our results showed that TP abolished the Pred-induced amelioration of CAIA, as well as several other Pred-induced effects, such as the reduction in thymus weight and the increase in insulin level. This most likely results from the effects of TP on the hepatic metabolism of this drug, since it strongly increased the Cyp3a11 expression in the liver. Altogether, we conclude that TP analgesia is not suitable for the CAIA model in male BALB/cAnNCrl mice, in particular when evaluating the effects of GCs such as Pred.


Subject(s)
Arthritis, Experimental , Tramadol , Male , Animals , Mice , Prednisolone/adverse effects , Acetaminophen/adverse effects , Tramadol/pharmacology , Tramadol/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Collagen/adverse effects
18.
J Neuroendocrinol ; 35(2): e13213, 2023 02.
Article in English | MEDLINE | ID: mdl-36426812

ABSTRACT

Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation.


Subject(s)
Glucocorticoids , Receptors, Steroid , Glucocorticoids/metabolism , Receptors, Mineralocorticoid/metabolism , Receptors, Glucocorticoid/metabolism , Brain/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Hippocampus/metabolism
19.
J Endocrinol ; 256(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36445262

ABSTRACT

Glucocorticoid stress hormones are produced in response to hypothalamic-pituitary-adrenal (HPA) axis activation. Glucocorticoids are essential for physiology and exert numerous actions via binding to the glucocorticoid receptor (GR). Relacorilant is a highly selective GR antagonist currently undergoing a phase 3 clinical evaluation for the treatment of endogenous Cushing's syndrome. It was found that increases in serum adrenocorticotropic hormone (ACTH) and cortisol concentrations after relacorilant treatment were substantially less than the increases typically observed with mifepristone, but it is unclear what underlies these differences. In this study, we set out to further preclinically characterize relacorilant in comparison to the classical but non-selective GR antagonist mifepristone. In human HEK-293 cells, relacorilant potently antagonized dexamethasone- and cortisol-induced GR signaling, and in human peripheral blood mononuclear cells, relacorilant largely prevented the anti-inflammatory effects of dexamethasone. In mice, relacorilant treatment prevented hyperinsulinemia and immunosuppression caused by increased corticosterone exposure. Relacorilant treatment reduced the expression of classical GR target genes in peripheral tissues but not in the brain. In mice, relacorilant induced a modest disinhibition of the HPA axis as compared to mifepristone. In line with this, in mouse pituitary cells, relacorilant was generally less potent than mifepristone in regulating Pomc mRNA and ACTH release. This contrast between relacorilant and mifepristone is possibly due to the distinct transcriptional coregulator recruitment by the GR. In conclusion, relacorilant is thus an efficacious peripheral GR antagonist in mice with only modest disinhibition of the HPA axis, and the distinct properties of relacorilant endorse the potential of selective GR antagonist treatment for endogenous Cushing's syndrome.


Subject(s)
Cushing Syndrome , Mifepristone , Humans , Mice , Animals , Mifepristone/pharmacology , Hydrocortisone/metabolism , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/metabolism , Leukocytes, Mononuclear , HEK293 Cells , Pituitary-Adrenal System/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Adrenocorticotropic Hormone/metabolism , Dexamethasone/pharmacology
20.
Front Endocrinol (Lausanne) ; 13: 960279, 2022.
Article in English | MEDLINE | ID: mdl-36034417

ABSTRACT

Synthetic glucocorticoids are clinically used to treat auto-immune and inflammatory disease. Despite the high efficacy, glucocorticoid treatments causes side effects such as obesity and insulin resistance in many patients. Via their pharmacological target, the glucocorticoid receptor (GR), glucocorticoids suppress endogenous glucocorticoid secretion. Endogenous, but not synthetic, glucocorticoids activate the mineralocorticoid receptor (MR) and side effects of synthetic glucocorticoids may thus not only result from GR hyperactivation but also from MR hypoactivation. Here, we tested the hypothesis that reactivation of MR with corticosterone add-on treatment can attenuate the metabolic effects of the synthetic glucocorticoid dexamethasone. Male 8-week-old C57Bl/6J mice received a high-fat diet supplemented with dexamethasone or vehicle, and were subcutaneously implanted with low-dose corticosterone- or vehicle-containing pellets. Dexamethasone strongly reduced body weight and fat mass gain, while corticosterone add-on partially normalized this. Dexamethasone-induced hyperglycemia and hyperinsulinemia were exacerbated by corticosterone add-on, which was prevented by MR antagonism. In subcutaneous white adipose tissue, corticosterone add-on prevented the dexamethasone-induced expression of intracellular lipolysis genes. In brown adipose tissue, dexamethasone also upregulated gene expression of brown adipose tissue identity markers, lipid transporters and lipolysis enzymes, which was prevented by corticosterone add-on. In conclusion, corticosterone add-on treatment prevents several, while exacerbating other metabolic effects of dexamethasone. While the exact role of MR remains elusive, this study suggests that corticosterone suppression by dexamethasone contributes to its effects in mice.


Subject(s)
Corticosterone , Glucocorticoids , Animals , Dexamethasone , Male , Mice , Mice, Inbred C57BL , Receptors, Glucocorticoid
SELECTION OF CITATIONS
SEARCH DETAIL