Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Pathol ; 260(4): 455-464, 2023 08.
Article in English | MEDLINE | ID: mdl-37345735

ABSTRACT

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma, Mucinous , Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Adenocarcinoma, Mucinous/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Pancreatic Neoplasms
2.
Gut ; 70(1): 148-156, 2021 01.
Article in English | MEDLINE | ID: mdl-32350089

ABSTRACT

OBJECTIVE: Recently, tumours with microsatellite instability (MSI)/defective DNA mismatch repair (dMMR) have gained considerable interest due to the success of immunotherapy in this molecular setting. Here, we aim to clarify clinical-pathological and/or molecular features of this tumour subgroup through a systematic review coupled with a comparative analysis with existing databases, also providing indications for a correct approach to the clinical identification of MSI/dMMR pancreatic ductal adenocarcinoma (PDAC). DESIGN: PubMed, SCOPUS and Embase were searched for studies reporting data on MSI/dMMR in PDAC up to 30 November 2019. Histological and molecular data of MSI/dMMR PDAC were compared with non-MSI/dMMR PDAC and with PDAC reference cohorts (including SEER database and The Cancer Genome Atlas Research Network - TCGA project). RESULTS: Overall, 34 studies with 8323 patients with PDAC were included in the systematic review. MSI/dMMR demonstrated a very low prevalence in PDAC (around 1%-2%). Compared with conventional PDAC, MSI/dMMR PDAC resulted strongly associated with medullary and mucinous/colloid histology (p<0.01) and with a KRAS/TP53 wild-type molecular background (p<0.01), with more common JAK genes mutations. Data on survival are still unclear. CONCLUSION: PDAC showing typical medullary or mucinous/colloid histology should be routinely examined for MSI/dMMR status using specific tests (immunohistochemistry, followed by MSI-PCR in cases with doubtful results). Next-generation sequencing (NGS) should be adopted either where there is limited tissue or as part of NGS tumour profiling in the context of precision oncology, acknowledging that conventional histology of PDAC may rarely harbour MSI/dMMR.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Microsatellite Instability , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/therapy , Databases, Factual , Humans , Pancreatic Neoplasms/therapy
4.
PLoS One ; 19(5): e0301969, 2024.
Article in English | MEDLINE | ID: mdl-38771787

ABSTRACT

PURPOSE: This study aims to introduce an innovative multi-step pipeline for automatic tumor-stroma ratio (TSR) quantification as a potential prognostic marker for pancreatic cancer, addressing the limitations of existing staging systems and the lack of commonly used prognostic biomarkers. METHODS: The proposed approach involves a deep-learning-based method for the automatic segmentation of tumor epithelial cells, tumor bulk, and stroma from whole-slide images (WSIs). Models were trained using five-fold cross-validation and evaluated on an independent external test set. TSR was computed based on the segmented components. Additionally, TSR's predictive value for six-month survival on the independent external dataset was assessed. RESULTS: Median Dice (inter-quartile range (IQR)) of 0.751(0.15) and 0.726(0.25) for tumor epithelium segmentation on internal and external test sets, respectively. Median Dice of 0.76(0.11) and 0.863(0.17) for tumor bulk segmentation on internal and external test sets, respectively. TSR was evaluated as an independent prognostic marker, demonstrating a cross-validation AUC of 0.61±0.12 for predicting six-month survival on the external dataset. CONCLUSION: Our pipeline for automatic TSR quantification offers promising potential as a prognostic marker for pancreatic cancer. The results underscore the feasibility of computational biomarker discovery in enhancing patient outcome prediction, thus contributing to personalized patient management.


Subject(s)
Biomarkers, Tumor , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/mortality , Prognosis , Female , Stromal Cells/pathology , Male , Deep Learning , Aged , Middle Aged , Image Processing, Computer-Assisted/methods
5.
J Pathol Clin Res ; 8(2): 181-190, 2022 03.
Article in English | MEDLINE | ID: mdl-34873870

ABSTRACT

Mismatch repair deficiency (dMMR) is a hallmark of Lynch syndrome (LS), but its prevalence in early-onset (diagnosed under the age of 50 years) duodenal, ampullary, and pancreatic carcinomas (DC, AC, and PC, respectively) is largely unknown. We explored the prevalence of dMMR and the underlying molecular mechanisms in a retrospectively collected cohort of 90 early-onset carcinomas of duodenal, ampullary, and pancreatic origin. dMMR was most prevalent in early-onset DCs (47.8%); more than half of those were associated with hereditary cancer syndromes (LS or constitutional mismatch repair deficiency syndrome). All dMMR AC and PC were due to LS. Concordance of dMMR with underlying hereditary condition warrants ubiquitous dMMR testing in all early-onset DC, AC, and PC.


Subject(s)
Carcinoma , Colorectal Neoplasms, Hereditary Nonpolyposis , Brain Neoplasms , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Humans , Middle Aged , Neoplastic Syndromes, Hereditary , Retrospective Studies
6.
Cancers (Basel) ; 13(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206554

ABSTRACT

Tumor mutational burden (TMB) is a numeric index that expresses the number of mutations per megabase (muts/Mb) harbored by tumor cells in a neoplasm. TMB can be determined using different approaches based on next-generation sequencing. In the case of high values, it indicates a potential response to immunotherapy. In this systematic review, we assessed the potential predictive role of high-TMB in pancreatic ductal adenocarcinoma (PDAC), as well as the histo-molecular features of high-TMB PDAC. High-TMB appeared as a rare but not-negligible molecular feature in PDAC, being present in about 1.1% of cases. This genetic condition was closely associated with mucinous/colloid and medullary histology (p < 0.01). PDAC with high-TMB frequently harbored other actionable alterations, with microsatellite instability/defective mismatch repair as the most common. Immunotherapy has shown promising results in high-TMB PDAC, but the sample size of high-TMB PDAC treated so far is quite small. This study highlights interesting peculiarities of PDAC harboring high-TMB and may represent a reliable starting point for the assessment of TMB in the clinical management of patients affected by pancreatic cancer.

7.
Pancreas ; 49(7): 999-1003, 2020 08.
Article in English | MEDLINE | ID: mdl-32658072

ABSTRACT

Medullary pancreatic carcinoma (MPC) is a rare histological variant of pancreatic ductal adenocarcinoma (PDAC). Because of its rarity, data on the molecular background of MPC are limited. Previous studies have shown that a subset of MPCs is microsatellite instable due to mismatch repair deficiency. Here, we present a unique case of a female patient in her 60s who is a long-term survivor after surgery for pancreatic cancer. The patient had a microsatellite stable MPC with a somatic mutation of the polymerase epsilon gene (POLE). Both microsatellite instable and POLE-mutated cancers are usually associated with high tumor mutational burden and antigen load, resulting in a prominent antitumor immune response and overall better survival. The current case illustrates that, in addition to mismatch repair deficiency, MPC can develop because of a somatic POLE mutation, resulting in a tumor with a high tumor mutational burden and leading to a better prognosis compared with conventional PDAC. This new finding may have important implications in the management of patients with MPC and calls for further studies on the role of POLE in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Polymerase II/genetics , Genetic Predisposition to Disease/genetics , Mutation , Pancreatic Neoplasms/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Cancer Survivors , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/metabolism , Female , Humans , Keratin-7/metabolism , Magnetic Resonance Imaging/methods , Middle Aged , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Survival Analysis
8.
Cancer Biol Ther ; 20(7): 949-955, 2019.
Article in English | MEDLINE | ID: mdl-31002019

ABSTRACT

Acinar cell carcinoma (ACC) is a rare pancreatic neoplasm with dismal prognosis. Insights into the molecular basis of ACC can pave the way for the application of more effective, personalized therapies and detection of patients with hereditary predisposition. Molecular analysis revealed a germline BRCA2 (and CHEK2) mutation in a patient with a rare pancreatic ACC with extensive intraductal growth. Somatic loss of the wild-type BRCA2 allele in the tumor indicated the causal relationship of ACC with the germline defect. A thorough literature review identified another nine ACCs associated with germline BRCA2 mutation and two ACCs associated with germline BRCA1 mutation, resulting in a prevalence of BRCA1/2 germline mutations in almost 7% of ACCs. Moreover, somatic BRCA1/2 alterations are reported in 16% of sporadic ACCs. Overall, about one fifth (22%) of all pancreatic ACCs exhibit BRCA1/2 deficiency. This study underscores the important role of BRCA1/2 mutations in pancreatic ACC. All ACC patients should undergo genetic testing for BRCA1/2 mutations to identify carriers of pathogenic variants. This will allow to select patients that can benefit from targeted therapies directed against BRCA1/2-deficient tumors and is also crucial as a referral to genetic screening for the relatives of affected individuals carrying germline BRCA1/2 alterations. Abbreviations: ACC: acinar cell carcinoma; HBOC: Hereditary Breast and Ovarian Cancer; LOH: loss of heterozygosity; PARP: poly (ADP-ribose) polymerase; PDAC: pancreatic ductal adenocarcinoma; PP: pancreatic panniculitis; SD: standard deviation; WES: whole-exome sequencing.


Subject(s)
BRCA2 Protein/genetics , Carcinoma, Acinar Cell/diagnosis , Carcinoma, Acinar Cell/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , BRCA1 Protein/genetics , Biomarkers, Tumor , Biopsy , Disease Management , Genetic Association Studies , Genetic Testing , Humans , Immunohistochemistry , Male , Middle Aged , Nucleic Acid Amplification Techniques , Precision Medicine
10.
Cell Signal ; 27(7): 1499-508, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25797047

ABSTRACT

Invasive cancer cells form actin-rich membrane protrusions called invadopodia that degrade extracellular matrix and facilitate cell invasion and metastasis. WIP (WASP-interacting protein) together with N-WASP (neural Wiskott-Aldrich syndrome protein) are localized in invadopodia and play a crucial role in their formation. Here we show that WIP interacts with endocytic adaptor proteins of the intersectin (ITSN) family, ITSN1 and ITSN2. The interaction is mediated by the SH3 domains of ITSNs and the middle part of the WIP proline-rich motifs. We have also demonstrated that ITSN1, WIP and N-WASP can form a complex in cells. Endogenous ITSN1 and ITSN2 are located in invasive protrusions of MDA-MB-231 breast cancer cell line. Moreover, data from immunofluorescent analysis revealed co-localization of ITSN1 and WIP at sites of invadopodia formation and in clathrin-coated pits. Together, these findings provide insights into the molecular mechanisms of invadopodia formation and identify ITSNs as scaffold proteins involved in this process.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cytoskeletal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Podosomes/metabolism , Actins/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Animals , Binding Sites , Brain/metabolism , Cell Line, Tumor , Cytoskeletal Proteins/chemistry , Humans , Immunoprecipitation , Intracellular Signaling Peptides and Proteins/chemistry , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Protein Binding , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL