Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 583(7817): 537-541, 2020 07.
Article in English | MEDLINE | ID: mdl-32699401

ABSTRACT

The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system in which electrical transport features a universal hydrodynamic description, even at room temperature1,2. This quantum critical 'Dirac fluid' is expected to have a shear viscosity close to a minimum bound3,4, with an interparticle scattering rate saturating1 at the Planckian time, the shortest possible timescale for particles to relax. Although electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene5-8, a clear demonstration of viscous flow at the charge-neutrality point remains elusive. Here we directly image viscous Dirac fluid flow in graphene at room temperature by measuring the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy centres in diamond. Scanning single-spin and wide-field magnetometry reveal a parabolic Poiseuille profile for electron flow in a high-mobility graphene channel near the charge-neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in a metallic conductor and also in a low-mobility graphene channel. Via combined imaging and transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly ideal electron fluid in charge-neutral, high-mobility graphene at room temperature4. Our results will enable the study of hydrodynamic transport in quantum critical fluids relevant to strongly correlated electrons in high-temperature superconductors9. This work also highlights the capability of quantum spin magnetometers to probe correlated electronic phenomena at the nanoscale.

2.
Nature ; 499(7459): 426-30, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23863930

ABSTRACT

Solitons-solitary waves that maintain their shape as they propagate-occur as water waves in narrow canals, as light pulses in optical fibres and as quantum mechanical matter waves in superfluids and superconductors. Their highly nonlinear and localized nature makes them very sensitive probes of the medium in which they propagate. Here we create long-lived solitons in a strongly interacting superfluid of fermionic atoms and directly observe their motion. As the interactions are tuned from the regime of Bose-Einstein condensation of tightly bound molecules towards the Bardeen-Cooper-Schrieffer limit of long-range Cooper pairs, the solitons' effective mass increases markedly, to more than 200 times their bare mass, signalling strong quantum fluctuations. This mass enhancement is more than 50 times larger than the theoretically predicted value. Our work provides a benchmark for theories of non-equilibrium dynamics of strongly interacting fermions.

3.
Phys Rev Lett ; 116(4): 045304, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26871342

ABSTRACT

We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.

4.
Phys Rev Lett ; 113(6): 065301, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25148332

ABSTRACT

We observe a long-lived solitary wave in a superfluid Fermi gas of (6)Li atoms after phase imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover.

5.
Phys Rev Lett ; 110(5): 055303, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414029

ABSTRACT

We provide a joint theoretical and experimental investigation of the temperature dependence of the collective oscillations of first sound nature exhibited by a highly elongated harmonically trapped Fermi gas at unitarity, including the region below the critical temperature for superfluidity. Differently from the lowest axial breathing mode, the hydrodynamic frequencies of the higher-nodal excitations show a temperature dependence, which is calculated starting from Landau two-fluid theory and using the available experimental knowledge of the equation of state. The experimental results agree with high accuracy with the predictions of theory and provide the first evidence for the temperature dependence of the collective frequencies near the superfluid phase transition.

6.
ACS Appl Mater Interfaces ; 15(2): 3287-3296, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36602594

ABSTRACT

Two-dimensional (2D) magnetic van der Waals materials provide a powerful platform for studying the fundamental physics of low-dimensional magnetism, engineering novel magnetic phases, and enabling thin and highly tunable spintronic devices. To realize high-quality and practical devices for such applications, there is a critical need for robust 2D magnets with ordering temperatures above room temperature that can be created via exfoliation. Here, the study of exfoliated flakes of cobalt-substituted Fe5GeTe2 (CFGT) exhibiting magnetism above room temperature is reported. Via quantum magnetic imaging with nitrogen-vacancy centers in diamond, ferromagnetism at room temperature was observed in CFGT flakes as thin as 16 nm corresponding to 16 layers. This result expands the portfolio of thin room-temperature 2D magnet flakes exfoliated from robust single crystals that reach a thickness regime relevant to practical spintronic applications. The Curie temperature Tc of CFGT ranges from 310 K in the thinnest flake studied to 328 K in the bulk. To investigate the prospect of high-temperature monolayer ferromagnetism, Monte Carlo calculations were performed, which predicted a high value of Tc of ∼270 K in CFGT monolayers. Pathways toward further enhancing monolayer Tc are discussed. These results support CFGT as a promising platform for realizing high-quality room-temperature 2D magnet devices.

7.
Phys Rev Lett ; 108(4): 045302, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400853

ABSTRACT

We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-dimensional as a strongly interacting Fermi gas of ^{6}Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.

8.
Science ; 335(6068): 563-7, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22245739

ABSTRACT

Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by high-precision measurements of the local compressibility, density, and pressure. Our data completely determine the universal thermodynamics of these gases without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity, which displays a characteristic lambda-like feature at the critical temperature T(c)/T(F) = 0.167(13). The ground-state energy is 3/5ξN E(F) with ξ = 0.376(4). Our measurements provide a benchmark for many-body theories of strongly interacting fermions.

SELECTION OF CITATIONS
SEARCH DETAIL