Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(22): 15209-15218, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775661

ABSTRACT

Solid electrolyte interphases (SEIs) are sought to protect high-capacity anodes, which suffer from severe volume changes and fast degradations. The previously proposed effective SEIs were of high strength yet abhesive, inducing a yolk-shell structure to decouple the rigid SEI from the anode for accommodating the volume change. Ambivalently, the interfacial void-evolved electro-chemo-mechanical vulnerabilities become inherent defects. Here, we establish a new rationale for SEIs that resilience and adhesivity are both requirements and pioneer a design of a resilient yet adhesive SEI (re-ad-SEI), integrated into a conjugated surface bilayer structure. The re-ad-SEI and its protected particles exhibit excellent stability almost free from the thickening of SEI and the particle pulverization during cycling. More promisingly, the dynamically bonded intact SEI-anode interfaces enable a high-efficiency ion transport and provide a unique mechanical confinement effect for structural integrity of anodes. The high Coulombic efficiency (>99.8%), excellent cycling stability (500 cycles), and superior rate performance have been demonstrated in microsized Si-based anodes.

2.
J Med Microbiol ; 67(6): 733-739, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29687766

ABSTRACT

PURPOSE: The resistance/nodulation/cell division (RND) family multidrug efflux pump, OqxAB, has been identified as one of the leading mechanisms of plasmid-mediated quinolone resistance and has become increasingly prevalent among Enterobacteriaceae in recent years. However, oqxAB genes have not yet been reported in Enterococcus isolates. The aim of the present study was to identify the oqxAB genes and investigate their prevalence among Enterococcus from swine manure in China. METHODOLOGY: The oqxAB genes were screened in 87 Enterococcus isolates by PCR. The transferability of the oqxAB genes in Enterococcus was determined by conjugation experiments. The genetic environment of oqxAB genes was investigated by cloning experiments, PCR mapping and sequencing. RESULTS: A high prevalence (86.2 %) of olaquindox resistance was observed in Enterococcus and 98.9 % isolates exhibited multidrug-resistance phenotypes. The occurrence of oqxA and oqxB in Enterococcus was also high (79.3 and 65.5 %, respectively). Sequence analysis of the cloned fragment indicated that the oqxAB cassette was linked to an incomplete Tn5 transposon containing aph(3')-IIa and flanked by IS26 [IS26-oqxAB-IS26-aph(3')-IIa]. The oqxAB-aph(3')-IIa-positive transconjugant or transformant showed resistance or reduced susceptibility to enrofloxacin, ciprofloxacin, olaquindox, mequindox, florfenicol, neomycin and kanamycin. CONCLUSION: This is the first time that the oqxAB genes have been identified in Enterococcus faecalis from swine manure. The genetic linkage of oqxAB-aph(3')-IIa in Enterococcus has not been described before. The high prevalence of oqxAB genes in Enterococcus suggests that it may constitute a reservoir for oqxAB genes and pose a potential threat to public health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Enterococcus/genetics , Enterococcus/isolation & purification , Manure/microbiology , Membrane Transport Proteins/genetics , Quinoxalines/pharmacology , Swine/microbiology , Animals , Cell Division , China , Conjugation, Genetic , Enrofloxacin , Enterococcus/drug effects , Enterococcus faecalis/drug effects , Escherichia coli/genetics , Fluoroquinolones/pharmacology , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Operon , Plasmids , Polymerase Chain Reaction , Quinolones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL