Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Bioorg Med Chem Lett ; 26(4): 1348-54, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26781932

ABSTRACT

Novel bicyclic adenosine A(2A) antagonists with an aminoquinazoline moiety were designed and synthesized. The optimization of the initial lead compound based on in vitro and in vivo activity has led to the discovery of a potent and selective class of adenosine A(2A) antagonists. The structure-activity relationships of this novel series of bicyclic aminoquinazoline derivatives as adenosine A(2A) antagonists are described in detail.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Quinazolines/chemistry , Receptor, Adenosine A2A/chemistry , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Animals , Binding Sites , Drug Design , Half-Life , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Structure, Tertiary , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Rats , Receptor, Adenosine A2A/metabolism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 22(14): 4896-9, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22687744

ABSTRACT

The structure-activity relationship studies of a novel sulfonylurea series of piperazine pyridazine-based small molecule glucan synthase inhibitors is described. The optimization of PK profiles within the series led to the discovery of several compounds with improved pharmacokinetic profiles which demonstrated in vitro potency against clinically relevant strains. However, the advancement of compounds from this series into a non-lethal systemic fungal infection model failed to show in vivo efficacy.


Subject(s)
Antifungal Agents/chemistry , Enzyme Inhibitors/chemistry , Glucosyltransferases/antagonists & inhibitors , Lead/chemistry , Piperazines/chemistry , Pyridazines/chemistry , Sulfonylurea Compounds/chemistry , Animals , Antifungal Agents/pharmacology , Candida/drug effects , Cell Line , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Piperazine , Pyridazines/pharmacology , Rats , Structure-Activity Relationship , Sulfonylurea Compounds/pharmacology
6.
Antimicrob Agents Chemother ; 55(11): 5099-106, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21844320

ABSTRACT

The echinocandins are a class of semisynthetic natural products that target ß-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibited in vitro activity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GS in vitro, and there was a strong correlation between enzyme inhibition and in vitro antifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants of Saccharomyces cerevisiae with reduced susceptibility to the piperazinyl-pyridazinones had substitutions in FKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model of Candida glabrata infection.


Subject(s)
Antifungal Agents/pharmacology , Glucosyltransferases/antagonists & inhibitors , Animals , Antifungal Agents/chemistry , Candida glabrata/drug effects , Candida glabrata/enzymology , Candida glabrata/pathogenicity , Candidiasis/drug therapy , Male , Mice , Molecular Structure , Piperazines/chemistry , Piperazines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology
7.
Bioorg Med Chem Lett ; 21(10): 2890-3, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21489787

ABSTRACT

A novel series of pyridazinone analogs has been developed as potent ß-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida glabrata/drug effects , Enzyme Inhibitors/chemistry , Molecular Structure , Pyridazines/chemistry , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 21(6): 1819-22, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316223

ABSTRACT

A structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one 1 has resulted in the identification of 2-(3,5-difluorophenyl)-4-(3-fluorocyclopentyloxy)-5-[4-(isopropylsulfonyl)piperazin-1-yl]-pyridazin-3(2H)-one 11c as a ß-1,3-glucan synthase inhibitor. Compound 11c exhibited significant efficacy in an in vivo mouse model of Candida glabrata infection.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Pyridazines/chemistry , Pyridazines/pharmacology , Enzyme Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Structure-Activity Relationship
9.
Bioorg Med Chem ; 18(18): 6646-50, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20728366

ABSTRACT

A structurally-diverse series of carboxylate derivatives based on the 1,2,5-thiadiazolidin-one 1,1 dioxide scaffold were synthesized and used to probe the S' subsites of human neutrophil elastase (HNE) and neutrophil proteinase 3 (Pr 3). Several compounds are potent inhibitors of HNE but devoid of inhibitory activity toward Pr 3, suggesting that the S' subsites of HNE exhibit significant plasticity and can, unlike Pr 3, tolerate various large hydrophobic groups. The results provide a promising framework for the design of highly selective inhibitors of the two enzymes.


Subject(s)
Leukocyte Elastase/antagonists & inhibitors , Protease Inhibitors/chemistry , Cyclic S-Oxides/chemical synthesis , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Humans , Kinetics , Leukocyte Elastase/metabolism , Myeloblastin/antagonists & inhibitors , Myeloblastin/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Thiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology
10.
Bioorg Med Chem Lett ; 17(18): 5150-4, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17683932

ABSTRACT

Substituted quinolyl oxazoles were discovered as a novel and highly potent series of phosphodiesterase 4 (PDE4) inhibitors. Structure-activity relationship studies revealed that the oxazole core, with 4-carboxamide and 5-aminomethyl groups, is a novel PDE4 inhibitory pharmacophore. Selectivity profiles and in vivo biological activity are also reported.


Subject(s)
Oxazoles/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Models, Molecular , Oxazoles/chemistry , Phosphodiesterase Inhibitors/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL