Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Urol ; : 101097JU0000000000004186, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146526

ABSTRACT

PURPOSE: Ultrasonic propulsion is an investigational procedure for awake patients. Our purpose was to evaluate whether ultrasonic propulsion to facilitate residual kidney stone fragment clearance reduced relapse. MATERIALS AND METHODS: This multicenter, prospective, open-label, randomized, controlled trial used single block randomization (1:1) without masking. Adults with residual fragments (individually ≤5 mm) were enrolled. Primary outcome was relapse as measured by stone growth, a stone-related urgent medical visit, or surgery by 5 years or study end. Secondary outcomes were fragment passage within 3 weeks and adverse events within 90 days. Cumulative incidence of relapse was estimated using the Kaplan-Meier method. Log-rank test was used to compare the treatment (ultrasonic propulsion) and control (observation) groups. RESULTS: The trial was conducted from May 9, 2015, through April 6, 2024. Median follow-up (interquartile range) was 3.0 (1.8-3.2) years. The treatment group (n = 40) had longer time to relapse than the control group (n = 42; P < .003). The restricted mean time-to-relapse was 52% longer in the treatment group than in the control group (1530 ± 92 days vs 1009 ± 118 days), and the risk of relapse was lower (hazard ratio 0.30, 95% CI 0.13-0.68) with 8 of 40 and 21 of 42 participants, respectively, experiencing relapse. Omitting 3 participants not asked about passage, 24 treatment (63%) and 2 control (5%) participants passed fragments within 3 weeks of treatment. adverse events were mild, transient, and self-resolving, and were reported in 25 treated participants (63%) and 17 controls (40%). CONCLUSIONS: Ultrasonic propulsion reduced relapse and added minimal risk. CLINICAL TRIAL REGISTRATION NO.: NCT02028559.

2.
J Acoust Soc Am ; 134(2): 1521-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927192

ABSTRACT

Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation.


Subject(s)
Chronic Pain/diagnosis , Hindlimb/innervation , Inflammation/diagnosis , Pain Measurement/methods , Ultrasonics/methods , Animals , Behavior, Animal , Chronic Pain/chemically induced , Chronic Pain/physiopathology , Chronic Pain/psychology , Disease Models, Animal , Freund's Adjuvant , Inflammation/chemically induced , Inflammation/physiopathology , Inflammation/psychology , Male , Pain Perception , Pain Threshold , Postsynaptic Potential Summation , Rats , Rats, Inbred F344 , Reaction Time , Time Factors
3.
Ultrasound Med Biol ; 46(8): 2007-2016, 2020 08.
Article in English | MEDLINE | ID: mdl-32444137

ABSTRACT

Large intra-abdominal, retroperitoneal and intramuscular hematomas are common consequences of sharp and blunt trauma and post-surgical bleeds, and often threaten organ failure, compartment syndrome or spontaneous infection. Current therapy options include surgical evacuation and placement of indwelling drains that are not effective because of the viscosity of the organized hematoma. We have previously reported the feasibility of using boiling histotripsy (BH)-a pulsed high-intensity focused ultrasound method-for liquefaction of large volumes of freshly coagulated blood and subsequent fine-needle aspiration. The goal of this work was to evaluate the changes in stiffness of large coagulated blood volumes with aging and retraction in vitro, and to correlate these changes with the size of the BH void and, therefore, the susceptibility of the material to BH liquefaction. Large-volume (55-200 mL) whole-blood clots were fabricated in plastic molds from human and bovine blood, either by natural clotting or by recalcification of anticoagulated blood, with or without addition of thrombin. Retraction of the clots was achieved by incubation for 3 h, 3 d or 8 d. The shear modulus of the samples was measured with a custom-built indentometer and shear wave elasticity (SWE) imaging. Sizes of single liquefied lesions produced with a 1.5-MHz high-intensity focused ultrasound transducer within a 30-s standard BH exposure served as the metric for susceptibility of clot material to this treatment. Neither the shear moduli of naturally clotted human samples (0.52 ± 0.08 kPa), nor their degree of retraction (ratio of expelled fluid to original volume 50%-58%) depended on the length of incubation within 0-8 d, and were significantly lower than those of bovine samples (2.85 ± 0.17 kPa, retraction 5%-38%). In clots made from anticoagulated bovine blood, the variation of calcium chloride concentration within 5-40 mmol/L did not change the stiffness, whereas lower concentrations and the addition of thrombin resulted in significantly softer clots, similar to naturally clotted human samples. Within the achievable shear modulus range (0.4-1.6 kPa), the width of the BH-liquefied lesion was more affected by the changes in stiffness than the length of the lesion. In all cases, however, the lesions were larger compared with any soft tissue liquefied with the same BH parameters, indicating higher susceptibility of hematomas to BH damage. These results suggest that clotted bovine blood with added thrombin is an acceptable in vitro model of both acute and chronic human hematomas for assessing the efficiency of BH liquefaction strategies.


Subject(s)
Extracorporeal Shockwave Therapy , Hematoma/therapy , Animals , Cattle , Elasticity Imaging Techniques/methods , Extracorporeal Shockwave Therapy/methods , Humans , In Vitro Techniques , Thrombosis/therapy
4.
Aviat Space Environ Med ; 80(4): 391-4, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19378911

ABSTRACT

BACKGROUND: High intensity focused ultrasound (HIFU) is being developed for a range of clinical applications. Of particular interest to NASA and the military is the use of HIFU for traumatic injuries because HIFU has the unique ability to transcutaneously stop bleeding. Automation of this technology would make possible its use in remote, austere settings by personnel not specialized in medical ultrasound. Here a system to automatically detect and target bleeding is tested and reported. METHODS: The system uses Doppler ultrasound images from a clinical ultrasound scanner for bleeding detection and hardware for HIFU therapy. The system was tested using a moving string to simulate blood flow and targeting was visualized by Schlieren imaging to show the focusing of the HIFU acoustic waves. RESULTS: When instructed by the operator, a Doppler ultrasound image is acquired and processed to detect and localize the moving string, and the focus of the HIFU array is electronically adjusted to target the string. Precise and accurate targeting was verified in the Schlieren images. CONCLUSIONS: An automated system to detect and target simulated bleeding has been built and tested. The system could be combined with existing algorithms to detect, target, and treat clinical bleeding.


Subject(s)
Hemorrhage/therapy , Hemostatic Techniques/instrumentation , Ultrasonic Therapy/instrumentation , Equipment Design , Humans , Image Interpretation, Computer-Assisted , Military Personnel , Space Flight , Ultrasonography, Doppler, Color
5.
Resuscitation ; 134: 76-80, 2019 01.
Article in English | MEDLINE | ID: mdl-30365974

ABSTRACT

INTRODUCTION: Hemodynamic-guided cardiopulmonary resuscitation (HGCPR) achieves better outcomes than standard resuscitation. Currently, HGCPR requires an invasive procedure, infeasible during resuscitation. Non-invasive measures of blood flow could provide useful hemodynamic guidance to rescuers. OBJECTIVE: We describe initial efforts to develop a device that detects, analyzes, and measures the velocity of carotid artery blood flow (CABF) towards the brain at pre-arrest baseline ('baseline') and during cardiopulmonary resuscitation, here tested in a swine model of cardiac arrest (CA). A key element of that device consists of non-imaging diagnostic ultrasound, due to its simplicity and small form factor, hence potential for deployment during HGCPR in a bandage placed on the neck. METHODS: Sixteen mixed-breed domestic swine were sedated, anesthetized and paralyzed, followed by endotracheal intubation and mechanical ventilation. Cardiac arrest was induced with a 3-s 100 mA transthoracic shock or bolus of fentanyl, after which all animals received mechanical CPR. A non-imaging ultrasound probe was manually applied to the neck over the carotid artery to capture CABF during baseline, as verified with diagnostic ultrasound imaging, and during mechanical resuscitation. RESULTS: We successfully collected CABF measurements at baseline in 14/16 swine and during attempted resuscitation with mechanical chest compression in 5/16 swine. Signal characteristics include peak blood flow both towards (90.4 +/-20.4 cm/s) and away from the brain (-44.2 +/-31.8 cm/s) during resuscitation, each larger than flow towards (41.7+/-14.8 cm/s) and away from brain (-3.0 +/-7.8 cm/s) during baseline. CONCLUSION: Measurement of CABF before and during CPR in swine with a non-imaging ultrasound probe is feasible before CA and informative when achieved during CPR. For example, observations of reverse flow within the carotid artery during CPR merits further study for its prevalence and effect on resuscitation outcomes. Also, tissue motion represents a significant obstacle for CABF measurement during CPR. Additional work will determine the feasibility and utility of non-imaging ultrasound measurements of CABF during resuscitation.


Subject(s)
Cardiopulmonary Resuscitation/methods , Carotid Arteries/diagnostic imaging , Heart Arrest/therapy , Ultrasonography, Doppler/methods , Animals , Blood Flow Velocity/physiology , Carotid Arteries/physiopathology , Disease Models, Animal , Heart Massage/methods , Humans , Pilot Projects , Swine
6.
Ultrasound Med Biol ; 34(8): 1200-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18336991

ABSTRACT

Tissue pulsatility imaging (TPI) is an ultrasonic technique that is being developed at the University of Washington to measure tissue displacement or strain as a result of blood flow over the cardiac and respiratory cycles. This technique is based in principle on plethysmography, an older nonultrasound technology for measuring expansion of a whole limb or body part due to perfusion. TPI adapts tissue Doppler signal processing methods to measure the "plethysmographic" signal from hundreds or thousands of sample volumes in an ultrasound image plane. This paper presents a feasibility study to determine if TPI can be used to assess cerebral vasoreactivity. Ultrasound data were collected transcranially through the temporal acoustic window from four subjects before, during and after voluntary hyperventilation. In each subject, decreases in tissue pulsatility during hyperventilation were observed that were statistically correlated with the subject's end-tidal CO2 measurements. (


Subject(s)
Cerebrovascular Circulation , Hyperventilation/diagnostic imaging , Ultrasonography, Doppler, Transcranial , Adult , Arterioles/physiopathology , Biomechanical Phenomena , Feasibility Studies , Humans , Hyperventilation/physiopathology , Hypocapnia/physiopathology , Linear Models , Male , Middle Aged , Pulsatile Flow , Vascular Resistance
7.
Ultrasound Med Biol ; 33(5): 681-90, 2007 May.
Article in English | MEDLINE | ID: mdl-17346872

ABSTRACT

Functional tissue pulsatility imaging is a new ultrasonic technique being developed to map brain function by measuring changes in tissue pulsatility as a result of changes in blood flow with neuronal activation. The technique is based in principle on plethysmography, an older, nonultrasound technology for measuring expansion of a whole limb or body part as a result of perfusion. Perfused tissue expands by a fraction of a percent early in each cardiac cycle when arterial inflow exceeds venous outflow, and it relaxes later in the cardiac cycle when venous drainage dominates. Tissue pulsatility imaging (TPI) uses tissue Doppler signal processing methods to measure this pulsatile "plethysmographic" signal from hundreds or thousands of sample volumes in an ultrasound image plane. A feasibility study was conducted to determine if TPI could be used to detect regional brain activation during a visual contrast-reversing checkerboard block paradigm study. During a study, ultrasound data were collected transcranially from the occipital lobe as a subject viewed alternating blocks of a reversing checkerboard (stimulus condition) and a static, gray screen (control condition). Multivariate analysis of variance was used to identify sample volumes with significantly different pulsatility waveforms during the control and stimulus blocks. In 7 of 14 studies, consistent regions of activation were detected from tissue around the major vessels perfusing the visual cortex.


Subject(s)
Brain/physiology , Echoencephalography/methods , Photic Stimulation/methods , Adult , Feasibility Studies , Female , Humans , Male , Ultrasonography, Doppler, Transcranial/methods , Visual Cortex/diagnostic imaging
8.
J Ther Ultrasound ; 3: 16, 2015.
Article in English | MEDLINE | ID: mdl-26388994

ABSTRACT

BACKGROUND: Bleeding from limb injuries is a leading cause of death on the battlefield, with deep wounds being least accessible. High-intensity focused ultrasound (HIFU) has been shown capable of coagulation of bleeding (cautery). This paper describes the development and refereed in vitro evaluation of an ultrasound (US) research prototype deep bleeder acoustic coagulation (DBAC) cuff system for evaluating the potential of DBAC in the battlefield. The device had to meet quantitative performance metrics on automated operation, therapeutic heating, bleeder detection, targeting accuracy, operational time limits, and cuff weight over a range of limb sizes and bleeder depths. These metrics drove innovative approaches in image segmentation, bleeder detection, therapy transducers, beam targeting, and dose monitoring. A companion (Part II) paper discusses the in vivo performance testing of an animal-specific DBAC system. MATERIALS AND METHODS: The cuff system employed 3D US imaging probes ("Ix") for detection and localization (D&L) and targeting, with the bleeders being identified by automated spectral Doppler analysis of flow waveforms. Unique high-element-count therapeutic arrays ("Tx") were developed, with the final cuff prototype having 21 Tx's and 6 Ix's. Spatial registration of Ix's and Tx's was done with a combination of image-registration, acoustic time-of-flight measurement, and tracking of the cuff shape via a fiber optic sensor. Acoustic radiation force impulse (ARFI) imaging or thermal strain imaging (TSI) at low-power doses were used to track the HIFU foci in closed-loop targeting. Recurrent neural network (RNN) acoustic thermometry guided closed-loop dosing. The cuff was tested on three phantom "limb" sizes: diameters = 25, 15, and 7.5 cm, with bleeder depths from 3.75 to 12.5 cm. "Integrated Phantoms" (IntP) were used for assessing D&L, closed-loop targeting, and closed-loop dosing. IntPs had surrogate arteries and bleeders, with blood-mimicking fluids moved by a pulsatile pump, and thermocouples (TCs) on the bleeders. Acoustic dosing was developed and tested using "HIFU Phantoms" having precisely located TCs, with end-of-dose target ∆T = 33-58 °C, and skin temperature ∆T ≤ 20 °C, being required. RESULTS: Most DBAC cuff performance requirements were met, including cuff weight, power delivery, targeting accuracy, skin temperature limit, and autonomous operation. The automated D&L completed in 9 of 15 tests (65 %), detecting the smallest (0.6 mm) bleeders, but it had difficulty with the lowest flow (3 cm/sec) bleeders, and in localizing bleeders in the smallest (7.5 cm) phantoms. D&L did not complete within the 9-min limit (results ranged 10-21 min). Closed-loop targeting converged in 20 of 31 tests (71 %), and closed-loop dosing power shut-off at preset ∆Ts was operational. SUMMARY AND CONCLUSION: The main performance objectives of the prototype DBAC cuff were met, however the designs required a number of challenging new technology developments. The novel Tx arrays exhibited high power with significant beam steering and focusing flexibility, while their integrated electronics enabled the required compact, lightweight configurability and simplified driving controls and cable/connector architecture. The compounded 3D imaging, combined with sophisticated software algorithms, enabled automated D&L and initial targeting and closed-loop targeting feedback via TSI. The development of RNN acoustic thermometry made possible feedback-controlled dosing. The lightweight architecture required significant design and fabrication effort to meet mechanical functionalities. Although not all target specifications were met, future engineering solutions addressing these performance deficiencies are proposed. Lastly, the program required very complex limb test phantoms and, while very challenging to develop, they performed well.

9.
J Ther Ultrasound ; 3: 17, 2015.
Article in English | MEDLINE | ID: mdl-26413296

ABSTRACT

BACKGROUND: Deep Bleeder Acoustic Coagulation (DBAC) is an ultrasound image-guided high-intensity focused ultrasound (HIFU) method proposed to automatically detect and localize (D&L) and treat deep, bleeding, combat wounds in the limbs of soldiers. A prototype DBAC system consisting of an applicator and control unit was developed for testing on animals. To enhance control, and thus safety, of the ultimate human DBAC autonomous product system, a thermal coagulation strategy that minimized cavitation, boiling, and non-linear behaviors was used. MATERIAL AND METHODS: The in vivo DBAC applicator design had four therapy tiles (Tx) and two 3D (volume) imaging probes (Ix) and was configured to be compatible with a porcine limb bleeder model developed in this research. The DBAC applicator was evaluated under quantitative test conditions (e.g., bleeder depths, flow rates, treatment time limits, and dose exposure time limits) in an in vivo study (final exam) comprising 12 bleeder treatments in three swine. To quantify blood flow rates, the "bleeder" targets were intact arterial branches, i.e., the superficial femoral artery (SFA) and a deep femoral artery (DFA). D&L identified, characterized, and targeted bleeders. The therapy sequence selected Tx arrays and determined the acoustic power and Tx beam steering, focus, and scan patterns. The user interface commands consisted of two buttons: "Start D&L" and "Start Therapy." Targeting accuracy was assessed by necropsy and histologic exams and efficacy (vessel coagulative occlusion) by angiography and histology. RESULTS: The D&L process (Part I article, J Ther Ultrasound, 2015 (this issue)) executed fully in all cases in under 5 min and targeting evaluation showed 11 of 12 thermal lesions centered on the correct vessel subsection, with minimal damage to adjacent structures. The automated therapy sequence also executed properly, with select manual steps. Because the dose exposure time limit (t dose ≤ 30 s) was associated with nonefficacious treatment, 60-s dosing and dual-dosing was also pursued. Thrombogenic evidence (blood clotting) and collagen denaturation (vessel shrinkage) were found in necropsy and histologically in all targeted SFAs. Acute SFA reductions in blood flow (20-30 %) were achieved in one subject, and one partial and one complete vessel occlusion were confirmed angiographically. The complete occlusion case was achieved with a dual dose (90 s total exposure) with focal intensity ≈500 W/cm(2) (spatial average, temporal average). CONCLUSIONS: While not meeting all in vivo objectives, the overall performance of the DBAC applicator was positive. In particular, D&L automation workflow was verified during each of the tests, with processing times well under specified (10 min) limits, and all bleeder branches were detected and localized. Further, gross necropsy and tissue examination confirmed that the HIFU thermal lesions were coincident with the target vessel locations in over 90 % of the multi-array dosing treatments. The SFA/DFA bleeder models selected, and the protocols used, were the most suitable practical model options for the given DBAC anatomical and bleeder requirements. The animal models were imperfect in some challenging aspects, including requiring tissue-mimicking material (TMM) standoffs to achieve deep target depths, thereby introducing device-tissue motion, with resultant imaging artifacts. The model "bleeders" involved intact vessels, which are subject to less efficient heating and coagulation cascade behaviors than true puncture injuries.

10.
Ultrasound Med Biol ; 30(6): 773-82, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15219957

ABSTRACT

Plethysmography has been used for over 50 years to measure gross change in tissue blood volume. Over the cardiac cycle, perfused tissue initially expands as the blood flow into the arterioles exceeds the flow through the capillary bed. Later in the cardiac cycle, the accumulated blood drains into the venous vasculature, allowing the tissue to return to its presystolic blood volume. Specific features in the plethysmographic waveform can be used to identify normal and abnormal perfusion. We are developing a Doppler strain-imaging technique to measure the local pulsatile expansion and relaxation of tissue analogous to the gross measurement of tissue volume change with conventional plethysmography. A phantom has been built to generate plethysmographic-style strains with amplitudes of less than 0.1% in a tissue-mimicking material. With Fisher's discriminant analysis, it is shown that normal and abnormal plethysmographic-style strains can be differentiated with high sensitivities using the Fourier components of the strain waveforms normalized to compensate for the variance in the strain amplitude estimate.


Subject(s)
Arteries/diagnostic imaging , Plethysmography/methods , Arteries/physiology , Discriminant Analysis , Fiber Optic Technology , Humans , Phantoms, Imaging , Pulsatile Flow , Signal Processing, Computer-Assisted , Stress, Mechanical , Ultrasonography, Doppler
11.
J Ther Ultrasound ; 2: 8, 2014.
Article in English | MEDLINE | ID: mdl-25516804

ABSTRACT

BACKGROUND: Potential peripheral sources of deep pain can require invasive evocative tests for their assessment. Here we perform research whose ultimate goal is development of a non-invasive evocative test for deep painful tissue. METHODS: We used a rat model of inflammation to show that intense focused ultrasound (iFU) differentially stimulates inflamed versus control tissue and can identify allodynia. To do so we applied iFU to inflamed and normal tissue below the skin of rats' hind paws and measured the amount of ultrasound necessary to induce paw withdrawal. RESULTS: iFU of sufficient strength (spatial and temporal average intensities ranged from 100-350 W/cm(2)) caused the rat to withdraw its inflamed paw, while the same iFU applied to the contralateral paw failed to induce withdrawal, with sensitivity and specificity generally greater than 90%. iFU stimulation of normal tissue required twice the amount of ultrasound to generate a withdrawal than did inflamed tissue, thereby assessing allodynia. Finally, we verified in a preliminary way the safety of iFU stimulation with acute histological studies coupled with mathematical simulations. CONCLUSIONS: Given that there exist systems to guide iFU deep to the skin, image-guided iFU may one day allow assessment of patient's deep, peripheral pain generators.

12.
Ultrasound Med Biol ; 39(2): 300-11, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23245823

ABSTRACT

The temperature dependence of an agar/gelatin phantom was evaluated. The purpose was to predict the material property response to high-intensity focused ultrasound (HIFU) for developing ultrasound guided dosing and targeting feedback. Changes in attenuation, sound speed, shear modulus and thermal properties with temperature were examined from 20°C to 70°C for 3 weeks post-manufacture. The attenuation decreased with temperature by a power factor of 0.15. Thermal conductivity, diffusivity and specific heat all increased linearly with temperature for a total change of approximately 16%, 10% and 6%, respectively. Sound speed had a parabolic dependence on temperature similar to that of water. Initially, the shear modulus irreversibly declined with even a slight increase in temperature. Over time, the gel maintained its room temperature shear modulus with moderate heating. A stable phantom was achieved within 2 weeks post-manufacture that possessed quasi-reversible material properties up to nearly 55°C.


Subject(s)
Agar/radiation effects , High-Intensity Focused Ultrasound Ablation/methods , Phantoms, Imaging , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Ultrasonography/instrumentation , Ultrasonography/methods , Agar/chemistry , Equipment Failure Analysis , Feedback , Gels/chemistry , Gels/radiation effects , Materials Testing , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL