Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Immunol ; 15: 1329846, 2024.
Article in English | MEDLINE | ID: mdl-38529279

ABSTRACT

Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Nucleocapsid/chemistry , Peptides/chemistry , SARS-CoV-2/chemistry , Histocompatibility Antigens Class II/chemistry , Spike Glycoprotein, Coronavirus/chemistry
2.
Cell Rep ; 42(8): 112839, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37471223

ABSTRACT

Self-antigen-specific T cells are prevalent in the mature adaptive immune system but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may allow these T cells to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self-antigen under highly stimulatory conditions, we use peptide:major histocompatibility complex (MHC) class II tetramers to track the behavior of endogenous CD4+ T cells with specificity to a lung-expressed self-antigen in mouse models of immune-mediated lung injury. Acute injury results in the exclusive expansion of CD4+ regulatory T cells (Tregs) that is dependent on self-antigen recognition and interleukin-2 (IL-2). Conversely, conventional CD4+ T cells of the same self-antigen specificity remain unresponsive even following Treg ablation. Thus, the self-antigen-specific CD4+ T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.


Subject(s)
Lung Injury , T-Lymphocytes, Regulatory , Mice , Animals , Autoantigens , Histocompatibility Antigens Class II , Autoimmunity , Forkhead Transcription Factors
3.
bioRxiv ; 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36798259

ABSTRACT

Self antigen-specific T cells are prevalent in the mature adaptive immune system, but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may provide these T cells with an opportunity to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self antigen under highly stimulatory conditions, we used peptide:MHCII tetramers to track the behavior of endogenous CD4 + T cells with specificity to a lung-expressed self antigen in mouse models of immune-mediated lung injury. Acute injury resulted in the exclusive expansion of regulatory T cells (Tregs) that was dependent on self antigen recognition and IL-2. Conversely, conventional T cells of the same self antigen specificity remained unresponsive, even following Treg ablation. Thus, the self antigen-specific T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.

SELECTION OF CITATIONS
SEARCH DETAIL