Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cytokine ; 174: 156456, 2024 02.
Article in English | MEDLINE | ID: mdl-38061091

ABSTRACT

Macrophages play a key role in maintaining systemic iron homeostasis and immunity. During pro-inflammatory stage macrophages retain iron due to the decrease of the unique iron exporter ferroportin. Increased cellular iron is sequestered in to storage protein ferritin by iron chaperone poly(rC)-binding protein 1 (PCBP1). However, the fate of PCBP1 and its interaction with ferritin in pro-inflammatory macrophages has not been studied so far. Here we report that PCBP1 protein level is down-regulated in lipopolysaccharide (LPS) treated macrophages. LPS did not alter PCBP1 mRNA and protein stability suggesting inhibition of translation as a mechanism of PCBP1 down-regulation that was confirmed by 35S-methionine incorporation assay. PCBP1 interacts with ferritin-H (Ft-H) subunit to load iron into ferritin. We detected a decreased interaction between PCBP1 and Ft-H after LPS-stimulation. As a result iron loading in to ferritin was affected with simultaneous increase in labile iron pool (LIP). Pre-treatment of cells with iron chelator dampened LPS-induced expression of TNF-α, IL-1ß and IL-6 mRNA. Silencing of PCBP1 increased the magnitude of expression of these cytokines compared to control siRNA transfected LPS-treated macrophages. In contrast, overexpression of PCBP1 resulted a decrease in expression of these cytokines compared to vector transfected macrophages. Our results reveal a novel regulation of PCBP1 and its role in expression of cytokines in LPS-induced pro-inflammatory macrophages.


Subject(s)
Iron , Lipopolysaccharides , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cytokines/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ferritins/genetics , Ferritins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Macrophages/metabolism
2.
Biochim Biophys Acta Gen Subj ; 1868(11): 130713, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278370

ABSTRACT

Increased iron level is detected in rat kidney and human urine in diabetic condition and implicated in associated nephropathy. However, the biological cue and mechanism of the iron accumulation remain unclear. Here we reveal that glucose increases iron uptake by promoting transferrin receptor 1 (TFRC) in kidney cells by a translational mechanism but does not alter expression of endosomal iron transporter DMT1. Glucose decreases iron exporter ferroportin (FPN) by a protein degradation mechanism. Hepcidin is known to bind at Cys-326 residue in promoting degradation of human ferroportin. When Cys-326 was mutated to Ser in human-FPN-FLAG and expressed in kidney cells, glucose still could degrade FPN-FLAG implicating involvement of hepcidin independent mechanism in glucose induced ferroportin degradation. Chronic hyperglycemia was generated in rats by administering streptozotocin (STZ) with periodic insulin injection to determine the level of iron homeostasis components. Increased TFRC and decreased ferroportin levels were detected in hyperglycemic rat kidney by Western blot and immunohistochemistry analyses. Hepcidin mRNA was not significantly altered in kidney but was marginally decreased in liver. Perls' staining and non-heme iron estimation showed an elevated iron level in hyperglycemic rat kidney. These results suggest that high glucose dysregulates iron transport components resulting iron accumulation in diabetic kidney.

SELECTION OF CITATIONS
SEARCH DETAIL