Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.390
Filter
Add more filters

Publication year range
1.
Cell ; 165(2): 449-63, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26949186

ABSTRACT

Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , B-Lymphocytes/immunology , HIV Antibodies/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , HIV-1/immunology , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment
2.
Cell ; 158(3): 633-46, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083873

ABSTRACT

ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes.


Subject(s)
Nuclear Envelope/metabolism , Stress, Mechanical , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Checkpoint Kinase 1 , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Osmosis , Protein Kinases/metabolism
3.
Cell ; 158(3): 481-91, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25065977

ABSTRACT

Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.


Subject(s)
AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/physiology , Amino Acid Sequence , B-Lymphocytes/immunology , Immune Evasion , Models, Molecular , Molecular Sequence Data , Mutation , Sequence Alignment , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
4.
Nat Immunol ; 16(11): 1134-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437240

ABSTRACT

To investigate if the microRNA (miRNA) pathway is required for dendritic cell (DC) development, we assessed the effect of ablating Drosha and Dicer, the two enzymes central to miRNA biogenesis. We found that while Dicer deficiency had some effect, Drosha deficiency completely halted DC development and halted myelopoiesis more generally. This indicated that while the miRNA pathway did have a role, it was a non-miRNA function of Drosha that was particularly critical. Drosha repressed the expression of two mRNAs encoding inhibitors of myelopoiesis in early hematopoietic progenitors. We found that Drosha directly cleaved stem-loop structure within these mRNAs and that this mRNA degradation was necessary for myelopoiesis. We have therefore identified a mechanism that regulates the development of DCs and other myeloid cells.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelopoiesis/immunology , RNA, Messenger/metabolism , Ribonuclease III/immunology , Animals , Base Sequence , Cell Differentiation/genetics , Cell Differentiation/immunology , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , Dendritic Cells/cytology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Myelopoiesis/genetics , Myosin Light Chains/antagonists & inhibitors , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribonuclease III/deficiency , Ribonuclease III/genetics
5.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922327

ABSTRACT

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Subject(s)
Bone Neoplasms , Melanoma , Prostatic Neoplasms , Male , Humans , Syntenins/genetics , Syntenins/metabolism , Melanoma/metabolism , Prostatic Neoplasms/genetics , Signal Transduction/genetics , Bone Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment , Neoplasm Metastasis
6.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36278853

ABSTRACT

Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.


Subject(s)
Drosophila Proteins , Transcription Factors , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Competition , DNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Carrier Proteins/metabolism , Cullin Proteins/metabolism , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
7.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Article in English | MEDLINE | ID: mdl-36662906

ABSTRACT

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cytomegalovirus Infections , Cytomegalovirus Vaccines , Cytomegalovirus , Humans , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/therapeutic use , Mutation , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
8.
Acc Chem Res ; 57(3): 413-427, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38243820

ABSTRACT

The evolutionary complexity of compartmentalized biostructures (such as cells and organelles) endows life-sustaining multistep chemical cascades and intricate living functionalities. Relatively, within a very short time span, a synthetic paradigm has resulted in tremendous growth in controlling the materials at different length scales (molecular, nano, micro, and macro), improving mechanistic understanding and setting the design principals toward different compositions, configurations, and structures, and in turn fine-tuning their optoelectronic and catalytic properties for targeted applications. Bioorthogonal catalysis offers a highly versatile toolkit for biochemical modulation and the capability to perform new-to-nature reactions inside living systems, endowing augmented functions. However, conventional catalysts have limitations to control the reactions under physiological conditions due to the hostile bioenvironment. The present account details the development of bioapplicable multicomponent designer nanoreactors (NRs), where the compositions, morphologies, interfacial active sites, and microenvironments around different metal nanocatalysts can be precisely controlled by novel nanospace-confined chemistries. Different architectures of porous, hollow, and open-mouth silica-based nano-housings facilitate the accommodation, protection, and selective access of different nanoscale metal-based catalytic sites. The modular porosity/composition, optical transparency, thermal insulation, and nontoxicity of silica are highly useful. Moreover, large macropores or cavities can also be occupied by enzymes (for chemoenzymatic cascades) and selectivity enhancers (for stimuli-responsive gating) along with the metal nanocatalysts. Further, it is crucial to selectively activate and control catalytic reactions by a remotely operable biocompatible energy source. Integration of highly coupled plasmonic (Au) components having few-nanometer structural features (gaps, cavities, and junctions as electromagnetic hot-spots) endows an opportunity to efficiently harness low-power NIR light and selectively supply energy to the interfacial catalytic sites through localized photothermal and electronic effects. Different plasmonically integrated NRs with customizable plasmonic-catalytic components, cavities inside bilayer nanospaces, and metal-laminated nanocrystals inside hollow silica can perform NIR-/light-induced catalytic reactions in complex media including living cells. In addition, magnetothermia-induced NRs by selective growth of catalytic metals on a pre-installed superparamagnetic iron-oxide core inside a hollow-porous silica shell endowed the opportunity to apply AMF as a bioorthogonal stimulus to promote catalytic reactions. By combining "plasmonic-catalytic" and "magnetic-catalytic" components within a single NR, two distinct reaction steps can be desirably controlled by two energy sources (NIR light and AMF) of distinct energy regimes. The capability to perform multistep organic molecular transformations in harmony with the natural living system will reveal novel reaction schemes for in cellulo synthesis of active drug and bioimaging probes. Well-designed nanoscale discrete architectures of NRs can facilitate spatiotemporal control over abiotic chemical synthesis without adversely affecting the cell viability. However, in-depth understanding of heterogeneous surface catalytic reactions, rate induction mechanisms, selectivity control pathways, and targeted nanobio interactions is necessary. The broad field of biomedical engineering can hugely benefit from the aid of novel nanomaterials with chemistry-based designs and the synthesis of engineered NRs performing unique bioorthogonal chemistry functions.


Subject(s)
Metals , Nanostructures , Nanotechnology , Catalysis , Silicon Dioxide
9.
J Immunol ; 210(2): 126-133, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36596219

ABSTRACT

DNA topoisomerases (TOPs) are complex enzymatic machines with extraordinary capacity to maintain DNA topology during torsion-intensive steps of replication and transcription. Recently, TOPs have gained significant attention for their tissue-specific function, and the vital role of TOPs in immune homeostasis and dysfunction is beginning to emerge. TOPs have been implicated in various immunological disorders such as autoimmunity, B cell immunodeficiencies, and sepsis, underscoring their importance in immune regulation. However, much remains unknown about immunological underpinnings of TOPs, and a deeper understanding of the role of TOPs in the immune system will be critical for yielding significant insights into the etiology of immunological disorders. In this review, we first discuss the recent literature highlighting the contribution of TOPs in the development of immune cells, and we further provide an overview of their importance in immune cell responses.


Subject(s)
DNA , Immunologic Deficiency Syndromes , Humans , Autoimmunity
10.
Chem Soc Rev ; 53(2): 1004-1057, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38116610

ABSTRACT

Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.

11.
J Biol Chem ; 299(8): 104977, 2023 08.
Article in English | MEDLINE | ID: mdl-37390989

ABSTRACT

Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.


Subject(s)
Cytochrome P-450 Enzyme System , Heme , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Fluorine/chemistry , Heme/chemistry , Mutagenesis , Oxidation-Reduction , Allosteric Regulation
12.
J Biol Chem ; 299(9): 105164, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37595871

ABSTRACT

We previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II. The recruitment of SHP-1 to chromatin is dependent on its association with the transcription factor signal transducer and activator of transcription 5 (STAT5). Loss of SHP-1 as well as STAT5 decrease RNA polymerase II recruitment to the PCK1 promoter and consequently PCK1 mRNA levels leading to blunted gluconeogenesis. This work highlights a novel nuclear role of SHP-1 as a key transcriptional regulator of hepatic gluconeogenesis adding a new mechanism to the repertoire of SHP-1 functions in metabolic control.

13.
J Cell Physiol ; 239(8): e31302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38775127

ABSTRACT

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.


Subject(s)
Adenoviridae , Blood-Brain Barrier , Brain Neoplasms , Animals , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Brain Neoplasms/virology , Humans , Adenoviridae/genetics , Interleukins/genetics , Cell Line, Tumor , Microbubbles/therapeutic use , Mice , Glioblastoma/therapy , Glioblastoma/virology , Glioblastoma/pathology , Xenograft Model Antitumor Assays , Oncolytic Virotherapy/methods , Genetic Vectors/administration & dosage , Temozolomide/therapeutic use , Mice, Nude
14.
Mamm Genome ; 35(1): 99-111, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37924370

ABSTRACT

Genome-wide association studies (GWAS) are one of the best ways to look into the connection between single-nucleotide polymorphisms (SNPs) and the phenotypic performance. This study aimed to identify the genetic variants that significantly affect the important reproduction traits in Vrindavani cattle using genome-wide SNP chip array data. In this study, 96 randomly chosen Vrindavani cows were genotyped using the Illumina Bovine50K BeadChip platform. A linear regression model of the genome-wide association study was fitted in the PLINK program between genome-wide SNP markers and reproduction traits, including age at first calving (AFC), inter-calving period (ICP), dry days (DD), and service period (SP) across the first three lactations. Information on different QTLs and genes, overlapping or adjacent to genomic coordinates of significant SNPs, was also mined from relevant databases in order to identify the biological pathways associated with reproductive traits in bovine. The Bonferroni correction resulted in total 39 SNP markers present on different chromosomes being identified that significantly affected the variation in AFC (6 SNPs), ICP (7 SNPs), DD (9 SNPs), and SP (17 SNPs). Novel potential candidate genes associated with reproductive traits that were identified using the GWAS methodology included UMPS, ITGB5, ADAM2, UPK1B, TEX55, bta-mir-708, TMPO, TDRD5, MAPRE2, PTER, AP3B1, DPP8, PLAT, TXN2, NDUFAF1, TGFA, DTNA, RSU1, KCNQ1, ADAM32, and CHST8. The significant SNPs and genes associated with the reproductive traits and the enriched genes may be exploited as candidate biomarkers in animal improvement programs, especially for improved reproduction performance in bovines.


Subject(s)
Genome-Wide Association Study , Reproduction , Female , Cattle/genetics , Animals , Genome-Wide Association Study/methods , Reproduction/genetics , Phenotype , Genotype , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics
15.
Mamm Genome ; 35(2): 170-185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485788

ABSTRACT

The present study was aimed at the identification of population stratifying markers from the commercial porcine SNP 60K array and elucidate the genome-wide selective sweeps in the crossbred Landlly pig population. Original genotyping data, generated on Landlly pigs, was merged in various combinations with global suid breeds that were grouped as exotic (global pig breeds excluding Indian and Chinese), Chinese (Chinese pig breeds only), and outgroup pig populations. Post quality control, the genome-wide SNPs were ranked for their stratifying power within each dataset in TRES (using three different criteria) and FIFS programs and top-ranked SNPs (0.5K, 1K, 2K, 3K, and 4K densities) were selected. PCA plots were used to assess the stratification power of low-density panels. Selective sweeps were elucidated in the Landlly population using intra- and inter-population haplotype statistics. Additionally, Tajima's D-statistics were calculated to determine the status of balancing selection in the Landlly population. PCA plots showed 0.5K marker density to effectively stratify Landlly from other pig populations. The A-score in DAPC program revealed the Delta statistic of marker selection to outperform other methods (informativeness and FST methods) and that 3000-marker density was suitable for stratification of Landlly animals from exotic pig populations. The results from selective sweep analysis revealed the Landlly population to be under selection for mammary (NAV2), reproductive efficiency (JMY, SERGEF, and MAP3K20), body conformation (FHIT, WNT2, ASRB, DMGDH, and BHMT), feed efficiency (CSRNP1 and ADRA1A), and immunity (U6, MYO3B, RBMS3, and FAM78B) traits. More than two methods suggested sweeps for immunity and feed efficiency traits, thus giving a strong indication for selection in this direction. The study is the first of its kind in Indian pig breeds with a comparison against global breeds. In conclusion, 500 markers were able to effectively stratify the breeds. Different traits under selective sweeps (natural or artificial selection) can be exploited for further improvement.


Subject(s)
Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Genetics, Population , Breeding , Swine/genetics , Genetic Markers , Sus scrofa/genetics , Haplotypes , Genome/genetics , Genome-Wide Association Study/methods , Genotype
16.
Planta ; 259(6): 152, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735012

ABSTRACT

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Subject(s)
Acetates , Artemisia annua , Artemisinins , Cyclopentanes , Methyltransferases , Oxylipins , Phylogeny , Artemisia annua/genetics , Artemisia annua/enzymology , Artemisia annua/metabolism , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Artemisinins/metabolism , Oxylipins/metabolism , Oxylipins/pharmacology , Methyltransferases/metabolism , Methyltransferases/genetics , Acetates/pharmacology , Acetates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Salicylic Acid/metabolism
17.
Planta ; 260(3): 75, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153062

ABSTRACT

MAIN CONCLUSION: This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.


Subject(s)
Climate Change , Eleusine , Nutritive Value , Eleusine/genetics , Crops, Agricultural/genetics , Phytochemicals/chemistry , Food Security , Quantitative Trait Loci
18.
J Virol ; 97(6): e0034723, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37199644

ABSTRACT

Multiple mechanisms exist in a cell to cope with stress. Four independent stress-sensing kinases constitute the integrated stress response machinery of the mammalian cell, and they sense the stress signals and act by phosphorylating the eukaryotic initiation factor 2α (eIF2α) to arrest cellular translation. Eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4) is one of the four kinases and is activated under conditions of amino acid starvation, UV radiation, or RNA virus infection, resulting in shutdown of global translation. An earlier study in our laboratory constructed the protein interaction network of the hepatitis E virus (HEV) and identified eIF2AK4 as a host interaction partner of the genotype 1 (g1) HEV protease (PCP). Here, we report that PCP's association with the eIF2AK4 results in inhibition of self-association and concomitant loss of kinase activity of eIF2AK4. Site-directed mutagenesis of the 53rd phenylalanine residue of PCP abolishes its interaction with the eIF2AK4. Further, a genetically engineered HEV-expressing F53A mutant PCP shows poor replication efficiency. Collectively, these data identify an additional property of the g1-HEV PCP protein, through which it helps the virus in antagonizing eIF2AK4-mediated phosphorylation of the eIF2α, thus contributing to uninterrupted synthesis of viral proteins in the infected cells. IMPORTANCE Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. It causes chronic infection in organ transplant patients. Although the disease is self-limiting in normal individuals, it is associated with high mortality (~30%) in pregnant women. In an earlier study, we identified the interaction between the genotype 1 HEV protease (PCP) and cellular eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4). Since eIF2AK4 is a sensor of the cellular integrated stress response machinery, we evaluated the significance of the interaction between PCP and eIF2AK4. Here, we show that PCP competitively associates with and interferes with self-association of the eIF2AK4, thereby inhibiting its kinase activity. Lack of eIF2AK4 activity prevents phosphorylation-mediated inactivation of the cellular eIF2α, which is essential for initiation of cap-dependent translation. Thus, PCP behaves as a proviral factor, promoting uninterrupted synthesis of viral proteins in infected cells, which is crucial for survival and proliferation of the virus.


Subject(s)
Endopeptidases , Hepatitis E virus , Protein Serine-Threonine Kinases , Viral Proteins , Female , Humans , Pregnancy , Endopeptidases/genetics , Endopeptidases/metabolism , Eukaryotic Initiation Factor-2/metabolism , Hepatitis E/virology , Hepatitis E virus/enzymology , Phosphorylation , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics , Protein Serine-Threonine Kinases/metabolism , Mutation , Amino Acids/genetics , Amino Acids/metabolism
19.
PLoS Pathog ; 18(9): e1010829, 2022 09.
Article in English | MEDLINE | ID: mdl-36103556

ABSTRACT

Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.


Subject(s)
Gram-Positive Bacterial Infections , Membrane Proteins , Bacterial Proteins/metabolism , Biofilms , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus faecalis , Humans , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism
20.
Mol Syst Biol ; 19(11): e11670, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37815040

ABSTRACT

Cells have evolved their communication methods to sense their microenvironments and send biological signals. In addition to communication using ligands and receptors, cells use diverse channels including gap junctions to communicate with their immediate neighbors. Current approaches, however, cannot effectively capture the influence of various microenvironments. Here, we propose a novel approach to investigate cell neighbor-dependent gene expression (CellNeighborEX) in spatial transcriptomics (ST) data. To categorize cells based on their microenvironment, CellNeighborEX uses direct cell location or the mixture of transcriptome from multiple cells depending on ST technologies. For each cell type, CellNeighborEX identifies diverse gene sets associated with partnering cell types, providing further insight. We found that cells express different genes depending on their neighboring cell types in various tissues including mouse embryos, brain, and liver cancer. Those genes are associated with critical biological processes such as development or metastases. We further validated that gene expression is induced by neighboring partners via spatial visualization. The neighbor-dependent gene expression suggests new potential genes involved in cell-cell interactions beyond what ligand-receptor co-expression can discover.


Subject(s)
Liver Neoplasms , Transcriptome , Animals , Mice , Transcriptome/genetics , Gene Expression Profiling , Brain , Cell Communication , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL