Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836556

ABSTRACT

CD47 is an antiphagocytic "don't eat me" signal that inhibits programmed cell removal of self. As red blood cells (RBCs) age they lose CD47 expression and become susceptible to programmed cell removal by macrophages. CD47-/- mice infected with Plasmodium yoelii, which exhibits an age-based preference for young RBCs, were previously demonstrated to be highly resistant to malaria infection. Our study sought to test the therapeutic benefit of CD47 blockade on ameliorating the clinical syndromes of experimental cerebral malaria (ECM), using the Plasmodium berghei ANKA (Pb-A) murine model. In vitro we tested the effect of anti-CD47 mAb on Plasmodium-infected RBC phagocytosis and found that anti-CD47 treatment significantly increased clearance of Plasmodium-infected RBCs. Infection of C57BL/6 mice with Pb-A is lethal and mice succumb to the clinical syndromes of CM between days 6 and 10 postinfection. Strikingly, treatment with anti-CD47 resulted in increased survival during the cerebral phase of Pb-A infection. Anti-CD47-treated mice had increased lymphocyte counts in the peripheral blood and increased circulating levels of IFN-γ, TNF-α, and IL-22. Despite increased circulating levels of inflammatory cytokines, anti-CD47-treated mice had reduced pathological features in the brain. Survival of ECM in anti-CD47-treated mice was correlated with reduced cellular accumulation in the cerebral vasculature, improved blood-brain barrier integrity, and reduced cytotoxic activity of infiltrating CD8+ T cells. These results demonstrate the therapeutic benefit of anti-CD47 to reduce morbidity in a lethal model of ECM, which may have implications for preventing mortality in young African children who are the highest casualties of CM.


Subject(s)
CD47 Antigen/antagonists & inhibitors , Host-Parasite Interactions , Malaria, Cerebral/pathology , Animals , Antibodies, Monoclonal/immunology , CD47 Antigen/immunology , Erythrocytes/parasitology , Humans , Malaria, Cerebral/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phagocytosis
2.
Infect Immun ; 91(10): e0016223, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37728332

ABSTRACT

Babesia microti, an intraerythrocytic apicomplexan parasite, is the primary causative agent of human babesiosis and an emerging threat to public health in the United States and elsewhere. An effective vaccine against B. microti would reduce disease severity in acute babesiosis patients and shorten the parasitemic period in asymptomatic individuals, thereby minimizing the risk of transfusion-transmitted babesiosis. Here we report on immunogenicity, protective efficacy, and correlates of immunity following immunization with four immunodominant recombinantly produced B. microti antigens-Serine Reactive Antigen 1 (SERA1), Maltese Cross Form Related Protein 1 (MCFRP1), Piroplasm ß-Strand Domain 1 (PißS1), and Babesia microti Alpha Helical Cell Surface Protein 1 (BAHCS1)-delivered subcutaneously in Montanide ISA 51/CpG adjuvant in three doses to BALB/c mice. Following B. microti parasite challenge, BAHCS1 led to the highest reduction in peak parasitemia (67.8%), followed by SERA1 (44.8%) and MCFRP1 (41.9%); PißS1 (27.6%) had minimal protective effect. All four B. microti antigens induced high ELISA total IgG and each isotype; however, antibody levels did not directly correlate with anti-parasitic activity in mice. Increased prechallenge levels of some cell populations including follicular helper T cells (TFH) and memory B cells, along with a set of six cytokines [IL-1α, IL-2, IL-3, IL-6, IL-12(p40), and G-CSF] that belong to both innate and adaptive immune responses, were generally associated with protective immunity. Our results indicate that mechanisms driving recombinant B. microti antigen-induced immunity are complex and multifactorial. We think that BAHCS1 warrants further evaluation in preclinical studies.


Subject(s)
Babesia microti , Babesiosis , Humans , Mice , Animals , United States , Babesia microti/physiology , Immunodominant Epitopes , Cytokines , Immunization
3.
Clin Infect Dis ; 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35325084

ABSTRACT

BACKGROUND: Borrelia miyamotoi is a relapsing fever spirochete that relatively recently has been reported to infect humans. It causes an acute undifferentiated febrile illness that can include meningoencephalitis and relapsing fever. Like Borrelia burgdorferi, it is transmitted by Ixodes scapularis ticks in the northeastern United States and by Ixodes pacificus ticks in the western United States. Despite reports of clinical cases from North America, Europe, and Asia, the prevalence, geographic range, and pattern of expansion of human B. miyamotoi infection are uncertain. To better understand these characteristics of B. miyamotoi in relation to other tickborne infections, we carried out a cross-sectional seroprevalence study across New England that surveyed B. miyamotoi, B. burgdorferi, and Babesia microti infections. METHODS: We measured specific antibodies against B. miyamotoi, B. burgdorferi, and B. microti among individuals living in 5 New England states in 2018. RESULTS: Analysis of 1153 serum samples collected at 11 catchment sites showed that the average seroprevalence for B. miyamotoi was 2.8% (range, 0.6%-5.2%), which was less than that of B. burgdorferi (11.0%; range, 6.8%-15.6%) and B. microti (10.0%; range, 6.5%-13.6%). Antibody screening within county residence in New England showed varying levels of seroprevalence for these pathogens but did not reveal a vectoral geographical pattern of distribution. CONCLUSIONS: Human infections caused by B. miyamotoi, B. burgdorferi, and B. microti are widespread with varying prevalence throughout New England.

4.
Biochem Biophys Res Commun ; 577: 58-63, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34507066

ABSTRACT

There is an urgent need for a malaria vaccine that can prevent severe disease in young children and adults. Despite earlier work showing an immunological mechanism for preventing infection and reducing disease severity, there is currently no reliable vaccine that can provide durable protection. In part, this may reflect a limited number of ways that the host can respond to the NANP repeat sequences of circumsporozoite protein (CSP) in the parasite. In addition, it may reflect antigenic escape by the parasite from protective antibodies. To be successful, a vaccine must protect against repeated exposure to infected mosquitoes in endemic areas. We have created a series of live viral vectors based on the rubella vaccine strain that express multiple tandem repeats of NANP, and we demonstrate immunogenicity in a rhesus macaque model. We tested the vectors in a sequential immunization strategy. In the first step, the animals were primed with CSP-DNA vaccine and boosted with rubella/CSP vectors. In the second step, we gave rubella/CSP vectors again, followed by recombinant CSP protein. Following the second step, antibody titers were comparable to adult exposure to malaria in an endemic area. The antibodies were specific for native CSP protein on sporozoites, and they persisted for at least 1½ years in two out of three macaques. Given the safety profile of rubella vaccine in children, these vectors could be most useful in protecting young children, who are at greatest risk of severe malarial disease.


Subject(s)
Macaca mulatta/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Rubella Vaccine/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique/methods , Humans , Immunity/immunology , Immunization/methods , Malaria Vaccines/administration & dosage , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Rubella Vaccine/genetics , Rubella Vaccine/metabolism , Time Factors , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology
5.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31308085

ABSTRACT

The development of effective malaria vaccines is hampered by incomplete understanding of the immunological correlates of protective immunity. Recently, the moderate clinical efficacy of the Plasmodium falciparum circumsporozoite protein (CSP)-based RTS,S/AS01E vaccine in phase 3 studies highlighted the urgency to design and test more efficacious next-generation malaria vaccines. In this study, we report that immunization with recombinant CSP from Plasmodium yoelii (rPyCSP), when delivered in Montanide ISA 51, induced sterilizing immunity against sporozoite challenge in C57BL/6 and BALB/c strains of mice. This immunity was antibody dependent, as evidenced by the complete loss of immunity in B-cell-knockout (KO) mice and by the ability of immune sera to neutralize sporozoite infectivity in mice. Th2-type isotype IgG1 antibody levels were associated with protective immunity. The fact that immunized gamma interferon (IFN-γ)-KO mice and wild-type (WT) mice have similar levels of protective immunity and the absence of IFN-γ-producing CD4+ and CD8+ T cells in protected mice, as shown by flow cytometry, indicate that the immunity is IFN-γ independent. Protection against sporozoite challenge correlated with higher frequencies of CD4+ T cells that express interleukin-2 (IL-2), IL-4, and tumor necrosis factor alpha (TNF-α). In the RTS,S study, clinical immunity was associated with higher IgG levels and frequencies of IL-2- and TNF-α-producing CD4+ T cells. The other hallmarks of immunity in our study included an increased number of follicular B cells but a loss in follicular T helper cells. These results provide an excellent model system to evaluate the efficacy of novel adjuvants and vaccine dosage and determine the correlates of immunity in the search for superior malaria vaccine candidates.


Subject(s)
Antibodies, Protozoan/biosynthesis , Immunoglobulin G/biosynthesis , Malaria Vaccines/biosynthesis , Malaria/prevention & control , Plasmodium yoelii/immunology , Protozoan Proteins/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Female , Immunization , Immunogenicity, Vaccine , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Malaria/genetics , Malaria/immunology , Malaria/parasitology , Malaria Vaccines/administration & dosage , Mannitol/administration & dosage , Mannitol/analogs & derivatives , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Oleic Acids/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Vaccines, Subunit
7.
Malar J ; 18(1): 116, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940128

ABSTRACT

BACKGROUND: Malaria remains a global public health problem responsible for 445,000 deaths in 2016. While microscopy remains the mainstay of malaria diagnosis, highly sensitive molecular methods for detection of low-grade sub-microscopic infections are needed for surveillance studies and identifying asymptomatic reservoirs of malaria transmission. METHODS: The Plasmodium falciparum genome sequence was analysed to identify high copy number genes that improve P. falciparum parasite detection in blood by RT-PCR. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)-specific primers were evaluated for P. falciparum detection in hospital-based microscopically positive dried blood spots and field-acquired whole blood from asymptomatic individuals from Ghana. RESULTS: PfEMP1 outperformed the Pf18S sequence for amplification-based P. falciparum detection. PfEMP1 primers exhibited sevenfold higher sensitivity compared to Pf18S primers for parasite genomic DNA. Probit analysis established a 95% detection threshold of 9.3 parasites/mL for PfEMP1 compared to 98.2 parasites/mL for Pf18S primers. The PfEMP1 primers also demonstrated superior clinical sensitivity, identifying 100% (20/20) of dried blood spot samples and 70% (69/98) of asymptomatic individuals as positive versus 55% (11/20) and 54% (53/98), respectively, for Pf18S amplification. CONCLUSIONS: These results establish PfEMP1 as a novel amplification target for highly sensitive detection of both acute infections from filter paper samples and submicroscopic asymptomatic low-grade infections.


Subject(s)
Blood/parasitology , Malaria, Falciparum/diagnosis , Molecular Diagnostic Techniques/methods , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Adolescent , Adult , Asymptomatic Diseases , Child , Child, Preschool , DNA Primers/genetics , Female , Ghana , Humans , Infant , Male , Mass Screening/methods , Plasmodium falciparum/genetics , Sensitivity and Specificity
8.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29685989

ABSTRACT

Recent studies have demonstrated that a subpopulation of neutrophils express the TCRαß combinatorial immunoreceptor in humans and mice. Here, we report that a Plasmodium berghei ANKA murine malaria infection induces expansion of TCRß expressing CD11b+ Ly6G+ neutrophils in the spleen during the early phase of infection. Measurement of TCRß transcript and protein levels of neutrophils in wild-type versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of nonspecific antibody staining or passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells. Remarkably, on day 3 postinfection, we observed a highly significant correlation between the proportion of neutrophils that express TCRß and peripheral blood parasite burden. In addition, TCRß+ neutrophils phagocytose parasitized erythrocytes with 4-fold greater efficiency than TCRß- neutrophils. Together these results signify that TCR expression by the neutrophil plays an important role in the regulation of parasite burden by enhancing the phagocytic capacity of the neutrophil.


Subject(s)
Malaria/immunology , Neutrophils/immunology , Parasitemia/immunology , Phagocytosis , Plasmodium berghei , Receptors, Antigen, T-Cell, alpha-beta/analysis , Animals , Brain/immunology , Female , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spleen/immunology
9.
Chembiochem ; 19(17): 1806-1809, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29949677

ABSTRACT

Protein arginine deiminases (PADs) have recently emerged at the forefront of drug-discovery programs for several human disorders. Despite this, a precise understanding of their functional roles in human biology remains to be fully elucidated. This report highlights a recent development of next-generation activity-based PAD probes that are highly efficient, cell active, and metabolically stable. This discovery should rapidly expedite functional assignments of PAD biology in both normal and diseased cells, thereby leading to the development of PAD-targeted therapeutics in the near future.


Subject(s)
Molecular Probes/chemistry , Protein-Arginine Deiminases/chemistry , Protein-Arginine Deiminases/metabolism , Catalytic Domain , Click Chemistry , Humans , Proteomics/methods
10.
Transfusion ; 58(8): 1924-1932, 2018 08.
Article in English | MEDLINE | ID: mdl-29664114

ABSTRACT

BACKGROUND: Babesiosis is a zoonotic disease transmitted to humans by the bite of infected ticks and caused by apicomplexan parasites, most commonly Babesia microti. Additionally, blood and blood products collected from asymptomatically infected blood donors may cause transfusion-transmitted infections in recipients. Highly sensitive molecular assays that detect parasite nucleic acid are needed for laboratory diagnosis and to identify and defer clinically silent but parasitemic blood donors. STUDY DESIGN AND METHODS: Here we report the development and analytical and clinical characterization of a real-time polymerase chain reaction (RT-PCR)-based assay for the detection of B. microti genomic DNA in whole blood. We evaluate the detection of Babesia parasites using two separate targets, the traditional18S ribosomal subunit gene (Bm18S) and members of the abundant BMN family of seroreactive antigens (BmBMN). RESULTS: Analytical sensitivity determination using a probit analysis demonstrated an analytical sensitivity of 30.9 parasites/mL for 18S amplification and 10.0 parasites/mL for BMN amplification The BMN primer set also demonstrates superior sensitivity for serial dilution panels prepared from clinically diagnosed Babesia-infected blood samples, generally detecting 10-fold more dilute nucleic acid. CONCLUSIONS: Cumulatively, our data demonstrate that RT-PCR detection of the BMN family of seroreactive antigens reflects a sensitive and superior assay for the detection of B. microti in whole blood samples.


Subject(s)
Antigens/blood , Babesia microti/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Antigens/genetics , Babesia microti/genetics , Babesia microti/immunology , Blood Donors , Humans , Transfusion Reaction/parasitology
11.
Proc Natl Acad Sci U S A ; 112(10): 3062-7, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25713361

ABSTRACT

Several Plasmodium species exhibit a strong age-based preference for the red blood cells (RBC) they infect, which in turn is a major determinant of disease severity and pathogenesis. The molecular basis underlying this age constraint on the use of RBC and its influence on parasite burden is poorly understood. CD47 is a marker of self on most cells, including RBC, which, in conjunction with signal regulatory protein alpha (expressed on macrophages), prevents the clearance of cells by the immune system. In this report, we have investigated the role of CD47 on the growth and survival of nonlethal Plasmodium yoelii 17XNL (PyNL) malaria in C57BL/6 mice. By using a quantitative biotin-labeling procedure and a GFP-expressing parasite, we demonstrate that PyNL parasites preferentially infect high levels of CD47 (CD47(hi))-expressing young RBC. Importantly, C57BL/6 CD47(-/-) mice were highly resistant to PyNL infection and developed a 9.3-fold lower peak parasitemia than their wild-type (WT) counterparts. The enhanced resistance to malaria observed in CD47(-/-) mice was associated with a higher percentage of splenic F4/80(+) cells, and these cells had a higher percentage of phagocytized parasitized RBC than infected WT mice during the acute phase of infection, when parasitemia was rapidly rising. Furthermore, injection of CD47-neutralizing antibody caused a significant reduction in parasite burden in WT C57BL/6 mice. Together, these results strongly suggest that CD47(hi) young RBC may provide a shield to the malaria parasite from clearance by the phagocytic cells, which may be an immune escape mechanism used by Plasmodium parasites that preferentially infect young RBC.


Subject(s)
CD47 Antigen/physiology , Phagocytosis/immunology , Plasmodium yoelii/physiology , Animals , Green Fluorescent Proteins/genetics , Host-Parasite Interactions , Macrophages/immunology , Mice, Inbred C57BL , Plasmodium yoelii/immunology
12.
J Infect Dis ; 216(10): 1264-1272, 2017 12 05.
Article in English | MEDLINE | ID: mdl-28968664

ABSTRACT

Background: Complete malaria eradication and optimal use of transmission-reducing interventions require knowledge of submicroscopic infectious reservoirs among asymptomatic individuals. Even submicroscopic levels of Plasmodium falciparum gametocytes can infect mosquitoes and promote onward transmission. Most efforts to identify gametocyte carriers use polymerase chain reaction amplification of the gametocyte-specific transcript Pfs25. Methods: To expand the repertoire of biomarkers available for superior gametocyte detection, we compared the gene expression profiles of gametocytes and asynchronous blood-stage P. falciparum parasites by microarray technology. This allowed the identification of 56 molecules abundantly expressed in the gametocyte stage of the parasite. The analytical sensitivity for gametocyte detection was evaluated for 25 genes with the highest expression levels. Results: One candidate, Pfg17, exhibited superior analytical sensitivity against a panel of gametocyte-spiked whole blood, detecting 10 gametocytes/mL; in comparison, Pfs25 detected only 25.3 gametocytes/mL. Pfg17 also exhibited superior clinical sensitivity, identifying 19.1% more samples from blood-film microscopy-negative Ghanaian children and 40% more samples from asymptomatic adults as gametocyte positive. Conclusions: Cumulatively, our results suggest Pfg17 is an excellent biomarker for detecting asymptomatic infectious reservoirs otherwise missed by the most sensitive molecular method available. Our study has also improved the repertoire of transmission-stage antigens available for evaluation as candidate vaccines.


Subject(s)
Disease Reservoirs/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Adolescent , Biomarkers , Child , Child, Preschool , Female , Gene Expression Profiling , Genes, Protozoan , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Male , Parasitemia/parasitology , Polymerase Chain Reaction/methods , Sensitivity and Specificity
13.
Molecules ; 22(11)2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29072593

ABSTRACT

Photoluminescent divinylbipyrroles were synthesized from 3,3',4,4'-tetraetyl-2,2'-bipyrrole-5,5'-dicarboxaldehyde and activated methylene compounds via aldol condensation. For mechanistic clarity, molecular structures of Meldrum's acid- and 1,3-dimethylbarbituric acid-derived divinylbipyrroles were determined by single-crystal X-ray diffraction. Photoluminescent properties of the synthesized divinylbipyrroles in dichloromethane were found to be dependent on the presence of electron withdrawing groups at the vinylic terminal. The divinylbipyrroles derived from malononitrile, Meldrum's acid, and 1,3-dimethylbarbituric acid showed fluorescent peaks at 553, 576, and 602 nm respectively. Computational studies indicated that the alkyl substituents on the bipyrrole 3 and 3' positions increased energy level of the highest occupied molecular orbital (HOMO) compared to the unsubstituted derivatives and provided rationale for the bathochromic shift of the ultraviolet-visible (UV-Vis) spectra compared to the previously reported analogs.


Subject(s)
Chemistry Techniques, Synthetic , Models, Molecular , Molecular Conformation , Photochemical Processes , Pyrroles/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Pyrroles/chemical synthesis , Spectrophotometry, Ultraviolet
14.
Proc Natl Acad Sci U S A ; 110(40): 16211-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24043826

ABSTRACT

Multiple peptide systems, including neuropeptide Y, leptin, ghrelin, and others, are involved with the control of food intake and body weight. The peptide LENSSPQAPARRLLPP (BigLEN) has been proposed to act through an unknown receptor to regulate body weight. In the present study, we used a combination of ligand-binding and receptor-activity assays to characterize a Gαi/o protein-coupled receptor activated by BigLEN in the mouse hypothalamus and Neuro2A cells. We then selected orphan G protein-coupled receptors expressed in the hypothalamus and Neuro2A cells and tested each for activation by BigLEN. G protein-coupled receptor 171 (GPR171) is activated by BigLEN, but not by the C terminally truncated peptide LittleLEN. The four C-terminal amino acids of BigLEN are sufficient to bind and activate GPR171. Overexpression of GPR171 leads to an increase, and knockdown leads to a decrease, in binding and signaling by BigLEN and the C-terminal peptide. In the hypothalamus GPR171 expression complements the expression of BigLEN, and its level and activity are elevated in mice lacking BigLEN. In mice, shRNA-mediated knockdown of hypothalamic GPR171 leads to a decrease in BigLEN signaling and results in changes in food intake and metabolism. The combination of GPR171 shRNA together with neutralization of BigLEN peptide by antibody absorption nearly eliminates acute feeding in food-deprived mice. Taken together, these results demonstrate that GPR171 is the BigLEN receptor and that the BigLEN-GPR171 system plays an important role in regulating responses associated with feeding and metabolism in mice.


Subject(s)
Body Weight/physiology , Feeding Behavior/physiology , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Analysis of Variance , Animals , Blotting, Western , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Immunohistochemistry , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred C57BL , Phosphorylation , Real-Time Polymerase Chain Reaction
15.
Infect Immun ; 83(10): 3890-901, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26195550

ABSTRACT

The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.


Subject(s)
Antigens, Protozoan/isolation & purification , Antigens, Protozoan/metabolism , Babesia microti/metabolism , Babesiosis/parasitology , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Babesia microti/chemistry , Babesia microti/genetics , Babesiosis/immunology , Female , Gene Expression , Humans , Mice , Molecular Sequence Data , Protein Structure, Tertiary , Protein Transport , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Alignment
16.
Eur J Immunol ; 44(9): 2680-91, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25047384

ABSTRACT

CD4(+) T-cell subtypes govern the synthesis of different Ab isotypes and other immune functions. The influence of CD4(+) T-cell differentiation programs on isotype switching and other aspects of host immunological networks during malaria infection are currently poorly understood. Here, we used Tbx21(-/-) mice deficient for T-bet, a regulator of Th1 CD4(+) T-cell differentiation, to examine the effect of Th1 CD4(+) T cells on the immune protection to nonlethal murine malaria Plasmodium yoelii 17XNL. We found that Tbx21(-/-) mice exhibited significantly lower parasite burden that correlated with elevated levels of IgG1, indicating that T-bet-dependent Ab isotype switching may be responsible for lower parasite burden. Absence of T-bet was also associated with a transient but significant loss of T cells during the infection, suggesting that T-bet may suppress malaria-induced apoptosis or induce proliferation of T cells. However, Tbx21(-/-) mice produced greater numbers of Foxp3(+) CD25(+) regulatory CD4(+) T cells, which may contribute to the early contraction of T cells. Lastly, Tbx21(-/-) mice exhibited unimpaired production of IFN-γ by a diverse repertoire of immune cell subsets and a selective expansion of IFN-γ-producing T cells. These observations may have implications in malaria vaccine design.


Subject(s)
Antibody Formation , Immunoglobulin Class Switching , Malaria/immunology , Plasmodium yoelii/immunology , T-Box Domain Proteins/immunology , Animals , Interferon-gamma/genetics , Interferon-gamma/immunology , Malaria/genetics , Mice , Mice, Knockout , T-Box Domain Proteins/genetics , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology
17.
Malar J ; 14: 451, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26573271

ABSTRACT

BACKGROUND: The infectivity of Plasmodium gametocytes is typically determined by microscopically examining the midguts of mosquitoes that have taken a blood meal containing potentially infectious parasites. Such assessments are required for the development and evaluation of transmission-reducing interventions (TRI), but are limited by subjectivity, technical complexity and throughput. The detection of circumsporozoite protein (CSP) by enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescent slot-blot (ECL-SB) may be used as objective, scalable alternatives to microscopy for the determination of infection prevalence. METHODS: To compare the performance of the CSP ELISA and ECL-SB for the detection of mosquito infection, four groups of Anopheles stephensi mosquitoes were infected with cultured Plasmodium falciparum gametocytes. At day-8 post-infection (PI), parasite status was determined by microscopy for a sample of mosquitoes from each group. At days 8 and 10 PI, the parasite status of separate mosquito samples was analysed by both CSP ELISA and ECL-SB. RESULTS: When mosquito samples were analysed 8 days PI, the ECL-SB determined similar infection prevalence to microscopy; CSP ELISA lacked the sensitivity to detect CSP in all infected mosquitoes at this early time point. When mosquitoes were analysed 48 h later (10 days PI) both assays performed as well as microscopy for infection detection. CONCLUSIONS: Whilst microscopical examination of mosquito guts is of great value when quantification of parasite burden is required, ECL-SB and CSP ELISA are suitable alternatives at day 10 PI when infection prevalence is the desired endpoint, although CSP ELISA is not suitable at day 8 PI. These results are important to groups considering large-scale implementation of TRI.


Subject(s)
Anopheles/parasitology , Antigens, Protozoan/analysis , Enzyme-Linked Immunosorbent Assay/methods , Immunoblotting/methods , Oocysts/chemistry , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Animals , Female , Plasmodium falciparum/chemistry
18.
J Immunol ; 191(9): 4699-708, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24078698

ABSTRACT

The pathogenesis of experimental cerebral malaria (ECM) is an immunologic process, mediated in part by Th1 CD4(+) T cells. However, the role of the Th1 CD4(+) T cell differentiation program on the ability to control parasitemia and susceptibility to ECM disease during blood stage malaria has never been assessed directly. Using the Plasmodium berghei ANKA murine model of ECM and mice deficient for the transcription factor T-bet (the master regulator of Th1 cells) on the susceptible C57BL/6 background, we demonstrate that although T-bet plays a role in the regulation of parasite burden, it also promotes the pathogenesis of ECM. T-bet-deficient (Tbx21(-/-)) mice had higher parasitemia than wild type controls did during the ECM phase of disease (17.7 ± 3.1% versus 10.9 ± 1.5%). In addition, although 100% (10/10) of wild type mice developed ECM by day 9 after infection, only 30% (3/10) of Tbx21(-/-) mice succumbed to disease during the cerebral phase of infection. Resistance to ECM in Tbx21(-/-) mice was associated with diminished numbers of IFN-γ-producing CD4(+) T cells in the spleen and a lower accumulation of CD4(+) and CD8(+) T cells in the brain. An augmented Th2 immune response characterized by enhanced production of activated GATA-3(+) CD4(+) T cells and elevated levels of the eotaxin, MCP-1, and G-CSF cytokines was observed in the absence of T-bet. Our results suggest that in virulent malarias, immune modulation or therapy resulting in an early shift toward a Th2 response may help to ameliorate the most severe consequences of malaria immunopathogenesis and the prospect of host survival.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Malaria, Cerebral/immunology , Parasitemia/immunology , Plasmodium berghei/immunology , T-Box Domain Proteins/immunology , Animals , Brain/cytology , Brain/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Chemokine CCL11/biosynthesis , Chemokine CCL2/biosynthesis , Female , GATA3 Transcription Factor/metabolism , Granulocyte Colony-Stimulating Factor/biosynthesis , Interferon-gamma/biosynthesis , Lymphocyte Activation/immunology , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/pathogenicity , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics
19.
Rapid Commun Mass Spectrom ; 28(24): 2681-9, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25380489

ABSTRACT

RATIONALE: Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry combined with isotope labeling methods are effective for protein and peptide quantification, but limited in their multiplexing capacity, cost-effectiveness and dynamic range. This study investigates MALDI-MS-based quantification of peptide phosphorylation without labeling, and aims to overcome the shot-to-shot variability of MALDI using a mathematical transformation and extended data acquisition times. METHODS: A linear relationship between the reciprocal of phosphopeptide mole fraction and the reciprocal of phosphorylated-to-unphosphorylated signal ratio is derived, and evaluated experimentally using three separate phosphopeptide systems containing phosphorylated serine, threonine and tyrosine residues: mixtures of phosphopeptide and its des-phospho-analog with known stoichiometry measured by vacuum MALDI-linear ion trap mass spectrometry and fit to the linear model. The model is validated for quantifying in vitro phosphorylation assays with inhibition studies on Cdk2/cyclinA. RESULTS: Dynamic range of picomoles to femtomoles, good accuracy (deviations of 1.5-3.0% from expected values) and reproducibility (relative standard deviation (RSD) = 4.3-6.3%) are achieved. Inhibition of cyclin-dependent kinase phosphorylation by the classical inhibitors olomoucine and r-roscovitine was evaluated and IC50 values found to be in agreement with reported literature values. These results, achieved with single-point calibration, without isotope or chromatography, compare favorably to those arrived at using isotope dilution (p > 0.5 for accuracy). CONCLUSIONS: The mathematical relationship derived here can be applied to a method that we term Double Reciprocal Isotope-free Phosphopeptide Quantification (DRIP-Q), as a strategy for quantification of in vitro phosphorylation assays, the first MALDI-based, isotope- and calibration curve-free method of its type. These results also pave the way for further systematic studies investigating the effect of peptide composition and experimental conditions on quantitative, label-free MALDI.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phosphopeptides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Calibration , Cyclin A/antagonists & inhibitors , Cyclin A/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Linear Models , Molecular Sequence Data , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphorylation , Reproducibility of Results
20.
J Infect Dis ; 217(6): 1012-1013, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29309646
SELECTION OF CITATIONS
SEARCH DETAIL