Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 805
Filter
Add more filters

Publication year range
1.
Cell ; 152(5): 1091-105, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452855

ABSTRACT

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.


Subject(s)
Cryptochromes/metabolism , F-Box Proteins/metabolism , Animals , CLOCK Proteins/genetics , Cell Nucleus/metabolism , Crosses, Genetic , Cytoplasm/metabolism , F-Box Proteins/genetics , Female , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Proteolysis
2.
J Neurosci ; 44(18)2024 May 01.
Article in English | MEDLINE | ID: mdl-38508714

ABSTRACT

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.


Subject(s)
Cocaine , Corpus Striatum , Mice, Knockout , Neuronal Plasticity , Animals , Cocaine/pharmacology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Mice , Male , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Female , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cortical Excitability/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/administration & dosage
3.
Cell ; 142(6): 841-3, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20850006

ABSTRACT

Cells possess internal ∼24 hr or circadian clocks that synchronize physiological processes with daily cycles of light and nutrient availability. In this issue, Asher et al. (2010) find that PARP-1 (poly(ADP-ribose) polymerase 1) modifies components of the clock machinery in response to feeding, providing a mechanism for how metabolic rhythms coordinate with circadian rhythms.

4.
Proc Natl Acad Sci U S A ; 119(31): e2204901119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881790

ABSTRACT

Although a wide variety of genetic tools has been developed to study learning and memory, the molecular basis of memory encoding remains incompletely understood. Here, we undertook an unbiased approach to identify novel genes critical for memory encoding. From a large-scale, in vivo mutagenesis screen using contextual fear conditioning, we isolated in mice a mutant, named Clueless, with spatial learning deficits. A causative missense mutation (G434V) was found in the voltage-gated potassium channel, subfamily C member 3 (Kcnc3) gene in a region that encodes a transmembrane voltage sensor. Generation of a Kcnc3G434V CRISPR mutant mouse confirmed this mutation as the cause of the learning defects. While G434V had no effect on transcription, translation, or trafficking of the channel, electrophysiological analysis of the G434V mutant channel revealed a complete loss of voltage-gated conductance, a broadening of the action potential, and decreased neuronal firing. Together, our findings have revealed a role for Kcnc3 in learning and memory.


Subject(s)
Hippocampus , Learning Disabilities , Memory , Mutation, Missense , Shaw Potassium Channels , Action Potentials/physiology , Animals , Hippocampus/physiopathology , Learning Disabilities/genetics , Mice , Mice, Inbred C57BL , Shaw Potassium Channels/genetics , Shaw Potassium Channels/physiology
5.
Semin Cancer Biol ; 90: 1-14, 2023 05.
Article in English | MEDLINE | ID: mdl-36706846

ABSTRACT

As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies. Similarly to what occurs in particular physiological settings, MCT1 and MCT4 are able to mediate lactate shuttles among cancer cells, and also between cancer and stromal cells in the tumour microenvironment. This form of metabolic cooperation is responsible for important cancer aggressiveness features, such as cell proliferation, survival, angiogenesis, migration, invasion, metastasis, immune tolerance and therapy resistance. The growing understanding of MCT functions and regulation is offering a new path to the design of novel inhibitors that can be foreseen in clinical practices. This review provides an overview of the role of MCT isoforms in cancer and summarizes the recent advances in their pharmacological targeting, highlighting the potential of new potent and selective MCT1 and/or MCT4 inhibitors in cancer therapeutics, and anticipating its inclusion in clinical practice.


Subject(s)
Neoplasms , Protons , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Membrane Transport Proteins/metabolism , Glycolysis , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Tumor Microenvironment
6.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717230

ABSTRACT

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Subject(s)
Heroin Dependence , Heroin , Rats , Male , Female , Animals , Heroin/pharmacology , Analgesics, Opioid/pharmacology , Nucleus Accumbens , Receptors, Opioid/metabolism , Rats, Transgenic , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Pain/metabolism
7.
Arch Microbiol ; 206(5): 212, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616221

ABSTRACT

Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.


Subject(s)
Bacteriophages , Biofilms , Animals , Humans , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Extracellular Matrix
8.
Langmuir ; 40(14): 7310-7327, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38426447

ABSTRACT

A thixotropic colloidal gel constituting an aqueous dispersion of synthetic clay Laponite with varying concentrations of salt has been studied for its rheological and tribological performance as a lubricant. We observed that the incorporation of NaCl induces notable enhancements in the colloidal gel's relaxation time, elastic modulus, and yield stress. Although an increase in NaCl concentration decreases the material's relaxation time dependence on waiting time (tw), overall, the strength of its thixotropic character has been observed to increase with an increase in salt concentration. The analysis of friction and wear indicated that the utilization of a thixotropic colloidal gel of Laponite with a higher concentration of NaCl resulted in progressively greater reductions in both the coefficient of friction and specific wear rates under various load-speed conditions. Severe abrasive wear on disc surface under dry test, gradually mitigated upon the introduction of these lubricants. Two simultaneous lubricating mechanisms, first, the smooth sliding of the friction pair, facilitated by the alignment of Laponite particles in the direction of shear forces, and second, the stable structure of Laponite, coupled with the addition of NaCl, enabling continuous replenishment of the wear track with lubricant, are attributed to lubrication effectiveness.

9.
Biomacromolecules ; 25(3): 1429-1438, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408372

ABSTRACT

We applied solid- and solution-state nuclear magnetic resonance spectroscopy to examine the structure of multidomain peptides composed of self-assembling ß-sheet domains linked to bioactive domains. Bioactive domains can be selected to stimulate specific biological responses (e.g., via receptor binding), while the ß-sheets provide the desirable nanoscale properties. Although previous work has established the efficacy of multidomain peptides, molecular-level characterization is lacking. The bioactive domains are intended to remain solvent-accessible without being incorporated into the ß-sheet structure. We tested for three possible anticipated molecular-level consequences of introducing bioactive domains to ß-sheet-forming peptides: (1) the bioactive domain has no effect on the self-assembling peptide structure; (2) the bioactive domain is incorporated into the ß-sheet nanofiber; and (3) the bioactive domain interferes with self-assembly such that nanofibers are not formed. The peptides involved in this study incorporated self-assembling domains based on the (SL)6 motif and bioactive domains including a VEGF-A mimic (QK), an IGF-mimic (IGF-1c), and a de novo SARS-CoV-2 binding peptide (SBP3). We observed all three of the anticipated outcomes from our examination of peptides, illustrating the unintended structural effects that could adversely affect the desired biofunctionality and biomaterial properties of the resulting peptide hydrogel. This work is the first attempt to evaluate the structural effects of incorporating bioactive domains into a set of peptides unified by a similar self-assembling peptide domain. These structural insights reveal unmet challenges in the design of highly tunable bioactive self-assembling peptide hydrogels.


Subject(s)
Nanofibers , Peptides , Protein Conformation, beta-Strand , Peptides/chemistry , Nanofibers/chemistry , Hydrogels/chemistry , Biocompatible Materials
10.
Biomacromolecules ; 25(2): 1319-1329, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38291600

ABSTRACT

Myocardial infarction (MI) is a major cause of morbidity and mortality worldwide, especially in aging and metabolically unhealthy populations. A major target of regenerative tissue engineering is the restoration of viable cardiomyocytes to preserve cardiac function and circumvent the progression to heart failure post-MI. Amelioration of ischemia is a crucial component of such restorative strategies. Angiogenic ß-sheet peptides can self-assemble into thixotropic nanofibrous hydrogels. These syringe aspiratable cytocompatible gels were loaded with stem cells and showed excellent cytocompatibility and minimal impact on the storage and loss moduli of hydrogels. Gels with and without cells were delivered into the myocardium of a mouse MI model (LAD ligation). Cardiac function and tissue remodeling were evaluated up to 4 weeks in vivo. Injectable peptide hydrogels synergized with loaded murine embryonic stem cells to demonstrate enhanced survival after intracardiac delivery during the acute phase post-MI, especially at 7 days. This approach shows promise for post-MI treatment and potentially functional cardiac tissue regeneration and warrants large-scale animal testing prior to clinical translation.


Subject(s)
Hydrogels , Myocardial Infarction , Mice , Animals , Hydrogels/pharmacology , Myocardial Infarction/therapy , Myocardium , Peptides/pharmacology , Embryonic Stem Cells
11.
Pediatr Blood Cancer ; 71(11): e31268, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39138616

ABSTRACT

INTRODUCTION: Children ≤5 years of age with Ewing's sarcoma (ES) possibly have a distinct disease biology, data on which are scarce. We evaluated clinical features, outcomes, and prognostic factors of ES among children with age ≤5 years. METHODS: Children with ES registered between 2003 and 2019 were included. Baseline clinical and treatment details were retrieved from medical records. Prognostic factors were identified using multivariable Cox regression. Clinical features and outcomes of children ≤5 years were compared with those greater than 5 years by chi-square and log-rank tests. Propensity score-matched (PSM) analysis was done to evaluate the impact of age on survival in the metastatic and localized subgroups. RESULTS: Out of the 859 patients, 86 (10%) were ≤5 years of age (median age 4 years, 60 males [69.8%]). The most common location was the extremities (37.2%), followed by thorax (27.9%) and head and neck (H&N) (22.1%); baseline metastases were seen in 25 patients (29.8%). The median event-free-survival (EFS) and overall survival (OS) were 25.6 and 68.7 months, respectively. Metastatic disease predicted inferior OS (hazard ratio [HR] = 2.54, p = .018) and EFS (HR = 2.47, p = .007], symptom duration ≤3 months predicted an inferior OS (HR = 2.17, p = .048). Compared to age greater than 5 years, younger children had more H&N and less pelvic primaries (p < .001) and lesser baseline metastases (p = .037). PSM analysis did not reveal any significant impact of age on OS in the metastatic (HR = 1.59, p = .29) or localized cohort (HR = 1.77, p = .09). CONCLUSIONS: Children with ES ≤5 years of age have a distinct favorable clinical presentation. However, age is not an independent prognostic factor for survival outcomes when adjusted for confounders.


Subject(s)
Bone Neoplasms , Sarcoma, Ewing , Humans , Sarcoma, Ewing/mortality , Sarcoma, Ewing/pathology , Sarcoma, Ewing/therapy , Male , Female , Child, Preschool , Infant , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Prognosis , Survival Rate , Child , Retrospective Studies , Follow-Up Studies , Age Factors
12.
Phys Chem Chem Phys ; 26(25): 17609-17621, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864309

ABSTRACT

This study investigates the electron field emission (EFE) of vertical silicon nanowires (Si NWs) fabricated on n-type Si (100) and p-type Si (100) substrates using catalyst-induced etching (CIE). The impact of dopant types (n- and p-types), optical energy gap, crystallite size and stress on EFE parameters has been explored in detail. The surface morphology of grown SiNWs has been characterized by field emission scanning electron microscopy (FESEM), showing vertical, well aligned SiNWs. Optical absorption and Raman spectroscopy confirmed the presence of the quantum confinement (QC) effect. The EFE performance of the grown nanowire arrays has been examined through recorded J-E measurements under the Fowler-Nordheim framework. The Si NWs grown on p-type Si showed a minimum turn-on field and also a higher field enhancement factor. The band-bending diagram also suggests a lower barrier height of p-type Si NWs compared to n-type Si NWs, which plays a key role in enhancing the EFE performance. These investigations suggest that dopant types (n- and p-types), band gap, crystallite size and stress influence the EFE parameters and Si NWs grown on p-type Si (100) substrates are much more favorable for the investigation of EFE properties.

13.
Phys Chem Chem Phys ; 26(25): 17892-17901, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38887960

ABSTRACT

α-MoO3 exhibits promising potential in the field of infrared detection and thermoelectricity owing to its exceptional characteristics of ultra-low-loss phonon polaritons (PhPs). It is of utmost importance to comprehend the phonon interaction exhibited by α-MoO3 in order to facilitate the advancement of phonon-centric devices. The intriguing applications of α-MoO3 for phonon-centric technology are found to be strongly dependent on scissors Raman modes. In this study, we have investigated the temperature-dependent asymmetric Raman line-shape characteristics of two scissors modes, Ag(1) and B1g(1), in the orthorhombic phase of bulk α-MoO3 within a temperature range spanning from 138 K to 498 K at 633 nm excitation wavelength. The Fano-Raman line-shape function was employed to analyze the asymmetry in terms of electron-phonon coupling strength, which varies from 0.050 to 0.313 and -0.017 to -0.192 for Ag(1) and B1g(1) modes, respectively, with temperature. This asymmetric behavior of Ag(1) and B1g(1) scissors modes are attributed to interference between the electronic energy continuum and discrete TO and LO phonon states, respectively. Therefore, the line-shape asymmetry in two scissors modes with increasing temperature stemming from the Fano resonance is also consistent with a 488 nm excitation wavelength. Additionally, anharmonicity caused by temperature results in redshift, and linewidth broadening of these two scissors modes through cubic-phonon decay has been observed. Moreover, the ultrashort lifetime of these optical phonons diminishes from ∼1.37 ps to ∼0.53 ps with increasing temperature due to the dominance of cubic-phonon decay over quartic-phonon decay. Our findings strongly emphasize the significance of investigating anharmonic interactions with Fano resonance to acquire an extensive comprehension of the vibrational characteristics of α-MoO3 for novel functionalities.

14.
Environ Res ; 252(Pt 4): 119086, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723986

ABSTRACT

Uncontrolled coal mining using non-scientific methods has presented a major threat to the quality of environment, particularly the water resources in eastern himalayan sub-region of India. Water bodies in the vicinity of mining areas are contaminated by acid mine drainage (AMD) that is released into streams and rivers. This study attempted to assess the impact of AMD, deciphering hydrogeochemical processes, seasonal fluctuations, and stable isotope features of water bodies flowing through and around coal mining areas. Self-organizing maps (SOMs) used to separate and categorize AMD, AMD-impacted and non-AMD impacted water from the different study locations for two sampling seasons revealed four clusters (C), with C1 and C2 impacted by AMD, C3 and C4 showing negligible to no impact of AMD. AMD impacted water was SO42- - Mg2+- Ca2+ hydrochemical type with sulphide oxidation and evaporation dominating water chemistry, followed by silicate weathering during both the sampling seasons. Water with negligible-to-no AMD-impact was Mg2+- Ca2+- SO42- to Ca2+ - HCO3- to mixed hydrochemical type with rock weathering and dissolution, followed by ion exchange as major factors controlling water chemistry during both the sampling seasons. Most of physicochemical parameters of C1 and C2 exceeded the prescribed limits, whereas in C3 and C4 water samples, parameters were found within the prescribed limits. Stable isotopes of hydrogen (δ2H) and oxygen (δ18O) during post-monsoon (PoM) varied between -41.04 ‰ and -29.98 ‰, and -6.60 ‰ to -3.94 ‰; and during pre-monsoon (PrM) varied between -58.18 ‰ and - 33.76 ‰ and -8.60 ‰ to -5.46 ‰. Deuterium excess (d-excess) ranged between 1.57 ‰ and 12.47 ‰ during PoM and 5.70 ‰ to 15.17 ‰ during PrM season. The stable isotopes analysis revealed that evaporation, mineral dissolution and mixing with rainwater are the key factors in study area.


Subject(s)
Coal Mining , Environmental Monitoring , Oxygen Isotopes , Seasons , India , Oxygen Isotopes/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Deuterium/analysis , Rivers/chemistry
15.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791415

ABSTRACT

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Subject(s)
Databases, Genetic , Genomics , Internet , Software , Animals , Computational Biology , Genome, Bacterial/genetics , Genome, Fungal/genetics , Genome, Plant/genetics , Plants/classification , Plants/genetics , Vertebrates/classification , Vertebrates/genetics
16.
Childs Nerv Syst ; 40(3): 919-924, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37930424

ABSTRACT

A 13-year-old female patient presented with painless vision loss and proptosis for 18 months. Imaging findings were highly suggestive of a supraorbital aneurysmal bone cyst (ABC) for which she underwent complete surgical excision. Postoperatively, she developed left hemiparesis. Computed tomography angiography (CTA) revealed right complete internal carotid arterial (ICA) thrombosis. This was managed conservatively, and she improved in hemiparesis over the next 3 weeks. Histopathology report revealed osteosarcoma with secondary ABC, for which she was referred for radiotherapy. At 1.5 months follow-up, the patient's left lower limb power improved to 4 + /5. She was walking without support, and her left upper limb power was 4/5.


Subject(s)
Bone Cysts, Aneurysmal , Bone Neoplasms , Osteosarcoma , Adolescent , Female , Humans , Bone Cysts, Aneurysmal/complications , Bone Cysts, Aneurysmal/diagnostic imaging , Bone Cysts, Aneurysmal/surgery , Bone Neoplasms/complications , Computed Tomography Angiography , Paresis
17.
Biochem Genet ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427123

ABSTRACT

Salmonella Typhimurium (ST) is a zoonotic pathogen that can cause gastroenteritis in humans when they consume contaminated food or water. When exposed to various stressors, both from living organisms (biotic) and the environment (abiotic), Salmonella Typhimurium produces Universal Stress Proteins (USPs). These proteins are gaining recognition for their crucial role in bacterial stress resistance and the ability to enter a prolonged state of growth arrest. Additionally, USPs exhibit diverse structures due to the fusion of the USP domain with different catalytic motifs, enabling them to participate in various reactions and cellular activities during stressful conditions. In this particular study, researchers cloned and analyzed the uspA gene obtained from poultry-derived strains of Salmonella Typhimurium. The gene comprises 435 base pairs, encoding a USP family protein consisting of 144 amino acids. Phylogenetic analysis demonstrated a close relationship between the uspA genes of Salmonella Typhimurium and those found in other bacterial species. We used molecular dynamics simulations and 3D structure prediction to ensure that the USPA protein was stable. Furthermore, we also carried out motif search and network analysis of protein-protein interactions. The findings from this study offer valuable insights for the development of inhibitors targeted against Salmonella Typhimurium.

18.
Mikrochim Acta ; 191(6): 301, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709350

ABSTRACT

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.


Subject(s)
Dimethylpolysiloxanes , Graphite , Wearable Electronic Devices , Graphite/chemistry , Humans , Dimethylpolysiloxanes/chemistry , Movement
19.
Indian J Clin Biochem ; 39(2): 248-256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577148

ABSTRACT

Vitamin-D is known to promote innate immune responses by acting as a cofactor of VDR for induction of antimicrobial peptides like cathelicidin. Close household contacts of pulmonary tuberculosis patients are at high risk of active infection, Therefore, possible role of vitamin-D in TB prevention through cathelicidin production was studied in high-risk household contacts (HHCs) of pulmonary tuberculosis (PTB) patients. 20 HHCs of PTB patients were recruited and followed up for one year. Levels of vitamin-D (25(OH)D) and its associated molecules were evaluated at 3-months intervals for one year or until the development of active TB. 25(OH)D was measured using chemiluminescence method. Serum VDR and cathelicidin levels were measured by ELISA and VDR mRNA expression by qPCR. Throughout the study period mean range of serum 25(OH)D levels was 20.51 ± 5.12 ng/ml. VDR and cathelicidin levels however showed significant decline after six months suggesting decrease in bacterial exposure. None of the HHCs developed active infection even with high exposure to 2 + to 3 + AFB positive index cases. Mantoux positive household contacts had high levels of VDR and cathelicidin, suggestive of an early or latent phase of infection, did not develop active TB plausibly due to maintenance of adequate serum levels of vitamin-D. Optimal levels of 25(OH)D and its associated molecules during early stages of infection may serve as protective factor against development of active TB. Cohort of HHCs with severely deficient vitamin-D levels (10 ng/ml) could be followed up for a better risk assessment.

20.
Indian J Crit Care Med ; 28(5): 419-421, 2024 May.
Article in English | MEDLINE | ID: mdl-38738201

ABSTRACT

How to cite this article: Kumar V. VeXUS: Do Not Drown in the ExCESS. Indian J Crit Care Med 2024;28(5):419-421.

SELECTION OF CITATIONS
SEARCH DETAIL