Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Biol Chem ; 293(40): 15691-15705, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30139745

ABSTRACT

c-Myc is a proto-oncogene controlling expression of multiple genes involved in cell growth and differentiation. Although the functional role of c-Myc as a transcriptional regulator has been intensively studied, targeting this protein in cancer remains a challenge. Here, we report a trimodal regulation of c-Myc function by the Ras effector, Ras-association domain family member 7 (RASSF7), a nonenzymatic protein modulating protein-protein interactions to regulate cell proliferation. Using HEK293T and HeLa cell lines, we provide evidence that RASSF7 destabilizes the c-Myc protein by promoting Cullin4B-mediated polyubiquitination and degradation. Furthermore, RASSF7 competed with MYC-associated factor X (MAX) in the formation of a heterodimeric complex with c-Myc and attenuated its occupancy on target gene promoters to regulate transcription. Consequently, RASSF7 inhibited c-Myc-mediated oncogenic transformation, and an inverse correlation between the expression levels of the RASSF7 and c-Myc genes was evident in human cancers. Furthermore, we found that RASSF7 interacts with c-Myc via its RA and leucine zipper (LZ) domains and LZ domain peptide is sufficient to inhibit c-Myc function, suggesting that this peptide might be used to target oncogenic c-Myc. These results unveil that RASSF7 and c-Myc are functionally linked in the control of tumorigenesis and open up potential therapeutic avenues for targeting the "undruggable" c-Myc protein in a subset of human cancers.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites , Binding, Competitive , Cell Line , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cullin Proteins/genetics , Cullin Proteins/metabolism , HCT116 Cells , HEK293 Cells , Humans , Models, Molecular , Polyubiquitin/genetics , Polyubiquitin/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Proteolysis , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription, Genetic
2.
JCI Insight ; 8(15)2023 08 08.
Article in English | MEDLINE | ID: mdl-37440313

ABSTRACT

Lysine-specific demethylase 1 (LSD1) is a histone demethylase that promotes stemness and cell survival in cancers such as prostate cancer. Most prostate malignancies are adenocarcinomas with luminal differentiation. However, some tumors undergo cellular reprogramming to a more lethal subset termed neuroendocrine prostate cancer (NEPC) with neuronal differentiation. The frequency of NEPC is increasing since the widespread use of potent androgen receptor signaling inhibitors. Currently, there are no effective treatments for NEPC. We previously determined that LSD1 promotes survival of prostate adenocarcinoma tumors. However, the role of LSD1 in NEPC is unknown. Here, we determined that LSD1 is highly upregulated in NEPC versus adenocarcinoma patient tumors. LSD1 suppression with RNAi or allosteric LSD1 inhibitors - but not catalytic inhibitors - reduced NEPC cell survival. RNA-Seq analysis revealed that LSD1 represses pathways linked to luminal differentiation, and TP53 was the top reactivated pathway. We confirmed that LSD1 suppressed the TP53 pathway by reducing TP53 occupancy at target genes while LSD1's catalytic function was dispensable for this effect. Mechanistically, LSD1 inhibition disrupted LSD1-HDAC interactions, increasing histone acetylation at TP53 targets. Finally, LSD1 inhibition suppressed NEPC tumor growth in vivo. These findings suggest that blocking LSD1's noncatalytic function may be a promising treatment strategy for NEPC.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Humans , Male , Adenocarcinoma/genetics , Cell Line, Tumor , Histone Demethylases/genetics , Prostatic Neoplasms/pathology , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Cancer Res ; 82(8): 1448-1460, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35195258

ABSTRACT

Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.


Subject(s)
Neoplasms , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Proteomics , Tumor Microenvironment
4.
Eur Urol ; 80(1): 71-81, 2021 07.
Article in English | MEDLINE | ID: mdl-33785255

ABSTRACT

CONTEXT: In addition to genetic alterations, epigenetic alterations play a crucial role during prostate cancer progression. A better understanding of the epigenetic factors that promote prostate cancer progression may lead to the design of rational therapeutic strategies to target prostate cancer more effectively. OBJECTIVE: To systematically review recent literature on the role of epigenetic factors in prostate cancer and highlight key preclinical and translational data with epigenetic therapies. EVIDENCE ACQUISITION: We performed a systemic literature search in PubMed. At the request of the editors, we limited our search to articles published between January 2015 and August 2020 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Clinical trials targeting epigenetic factors were retrieved from clinicaltrials.gov. EVIDENCE SYNTHESIS: We retrieved 1451 articles, and 62 were finally selected for review. Twelve additional foundational studies outside this time frame were also included. Findings from both preclinical and clinical studies were reviewed and summarized. We also discuss 12 ongoing clinical studies with epigenetic targeted therapies. CONCLUSIONS: Epigenetic mechanisms impact prostate cancer progression. Understanding the role of specific epigenetic factors is critical to determine how we may improve prostate cancer treatment and modulate resistance to standard therapies. Recent preclinical studies and ongoing or completed clinical studies with epigenetic therapies provide a useful roadmap for how to best deploy epigenetic therapies clinically to target prostate cancer. PATIENT SUMMARY: Epigenetics is a process by which gene expression is regulated without changes in the DNA sequence itself. Oftentimes, epigenetic changes influence cellular behavior and contribute to cancer development or progression. Understanding how epigenetic changes occur in prostate cancer is the first step toward therapeutic targeting in patients. Importantly, laboratory-based studies and recently completed and ongoing clinical trials suggest that drugs targeting epigenetic factors are promising. More work is necessary to determine whether this class of drugs will add to our existing treatment arsenal in prostate cancer.


Subject(s)
Pharmaceutical Preparations , Prostatic Neoplasms , Biomarkers , DNA Methylation , Epigenesis, Genetic , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics
5.
Clin Cancer Res ; 27(17): 4923-4936, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34145028

ABSTRACT

PURPOSE: Lineage plasticity in prostate cancer-most commonly exemplified by loss of androgen receptor (AR) signaling and a switch from a luminal to alternate differentiation program-is now recognized as a treatment resistance mechanism. Lineage plasticity is a spectrum, but neuroendocrine prostate cancer (NEPC) is the most virulent example. Currently, there are limited treatments for NEPC. Moreover, the incidence of treatment-emergent NEPC (t-NEPC) is increasing in the era of novel AR inhibitors. In contradistinction to de novo NEPC, t-NEPC tumors often express the AR, but AR's functional role in t-NEPC is unknown. Furthermore, targetable factors that promote t-NEPC lineage plasticity are also unclear. EXPERIMENTAL DESIGN: Using an integrative systems biology approach, we investigated enzalutamide-resistant t-NEPC cell lines and their parental, enzalutamide-sensitive adenocarcinoma cell lines. The AR is still expressed in these t-NEPC cells, enabling us to determine the role of the AR and other key factors in regulating t-NEPC lineage plasticity. RESULTS: AR inhibition accentuates lineage plasticity in t-NEPC cells-an effect not observed in parental, enzalutamide-sensitive adenocarcinoma cells. Induction of an AR-repressed, lineage plasticity program is dependent on activation of the transcription factor E2F1 in concert with the BET bromodomain chromatin reader BRD4. BET inhibition (BETi) blocks this E2F1/BRD4-regulated program and decreases growth of t-NEPC tumor models and a subset of t-NEPC patient tumors with high activity of this program in a BETi clinical trial. CONCLUSIONS: E2F1 and BRD4 are critical for activating an AR-repressed, t-NEPC lineage plasticity program. BETi is a promising approach to block this program.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Carcinoma, Neuroendocrine/drug therapy , E2F1 Transcription Factor/drug effects , E2F1 Transcription Factor/physiology , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms/drug therapy , Proteins/antagonists & inhibitors , Cell Line, Tumor , Humans , Male
6.
Neoplasia ; 22(6): 253-262, 2020 06.
Article in English | MEDLINE | ID: mdl-32403054

ABSTRACT

Neuroendocrine prostate cancer (NEPC) is the most virulent form of prostate cancer. Importantly, our recent work examining metastatic biopsy samples demonstrates NEPC is increasing in frequency. In contrast to prostate adenocarcinomas that express a luminal gene expression program, NEPC tumors express a neuronal gene expression program. Despite this distinction, the diagnosis of NEPC is often challenging, demonstrating an urgent need to identify new biomarkers and therapeutic targets. Our prior work demonstrated that the histone demethylase LSD1 (KDM1A) is important for survival of prostate adenocarcinomas, but little was known about LSD1's role in NEPC. Recently, a neural-specific transcript variant of LSD1-LSD1+8a-was discovered and demonstrated to activate neuronal gene expression in neural cells. The splicing factor SRRM4 was previously shown to promote LSD1+8a splicing in neuronal cells, and SRRM4 promotes NEPC differentiation and cell survival. Therefore, we sought to determine if LSD1+8a might play a role in NEPC and whether LSD1+8a splicing was linked to SRRM4. To investigate a potential role for LSD1+8a in NEPC, we examined a panel of prostate adenocarcinoma and NEPC patient-derived xenografts and metastatic biopsies. LSD1+8a was expressed exclusively in NEPC samples and correlated significantly with elevated expression of SRRM4. Using SRRM4-overexpressing cell lines, we determined that SRRM4 mediates alternative splicing of LSD1+8a. Finally, using gain of function studies, we confirmed that LSD1+8a and SRRM4 co-regulate target genes distinct from canonical LSD1. Our findings suggest further study of the interplay between SRRM4 and LSD1+8a and mechanisms by which LSD1+8a regulates gene expression in NEPC is warranted.


Subject(s)
Histone Demethylases/genetics , Nerve Tissue Proteins/genetics , Neuroendocrine Tumors/genetics , Prostatic Neoplasms/genetics , Alternative Splicing/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Epigenomics , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Neuroendocrine Tumors/pathology
7.
PLoS One ; 10(8): e0135845, 2015.
Article in English | MEDLINE | ID: mdl-26274615

ABSTRACT

GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501-582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the 'G2/M' phase of cell cycle whereas depletion of endogenous GNL3L results in 'G2/M' arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster 'S' phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote 'S' phase progression during cell proliferation.


Subject(s)
Cell Division/physiology , Cell Nucleus/metabolism , G2 Phase/physiology , GTP-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Active Transport, Cell Nucleus/physiology , Animals , COS Cells , Cell Nucleus/genetics , Chlorocebus aethiops , Cyclin A2/biosynthesis , Cyclin A2/genetics , Cyclin E/biosynthesis , Cyclin E/genetics , E2F1 Transcription Factor/biosynthesis , E2F1 Transcription Factor/genetics , GTP-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Mice , Mutagenesis , NIH 3T3 Cells , Nuclear Proteins/genetics , Oncogene Proteins/biosynthesis , Oncogene Proteins/genetics , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL