Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 609(7929): 1005-1011, 2022 09.
Article in English | MEDLINE | ID: mdl-36131016

ABSTRACT

Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.


Subject(s)
Esters , Glycerophospholipids , Inositol Phosphates , Lysosomes , Membrane Glycoproteins , Molecular Chaperones , Animals , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Child , Esters/metabolism , Glycerophospholipids/cerebrospinal fluid , Glycerophospholipids/metabolism , Humans , Inositol Phosphates/cerebrospinal fluid , Inositol Phosphates/metabolism , Lysosomal Storage Diseases/cerebrospinal fluid , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/cerebrospinal fluid , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism
2.
Nature ; 588(7839): 699-704, 2020 12.
Article in English | MEDLINE | ID: mdl-33208952

ABSTRACT

Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.


Subject(s)
Cysteine/metabolism , Lysosomes/metabolism , Melanosomes/metabolism , Membrane Proteins/metabolism , Biological Transport , Cell Fractionation , Cell Line , Cystine/metabolism , Cystinosis/genetics , Cystinosis/metabolism , Fibroblasts , Humans , Melanins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Oxidation-Reduction
3.
Nature ; 559(7715): 632-636, 2018 07.
Article in English | MEDLINE | ID: mdl-29995852

ABSTRACT

The chemotherapeutic drug methotrexate inhibits the enzyme dihydrofolate reductase1, which generates tetrahydrofolate, an essential cofactor in nucleotide synthesis2. Depletion of tetrahydrofolate causes cell death by suppressing DNA and RNA production3. Although methotrexate is widely used as an anticancer agent and is the subject of over a thousand ongoing clinical trials4, its high toxicity often leads to the premature termination of its use, which reduces its potential efficacy5. To identify genes that modulate the response of cancer cells to methotrexate, we performed a CRISPR-Cas9-based screen6,7. This screen yielded FTCD, which encodes an enzyme-formimidoyltransferase cyclodeaminase-that is required for the catabolism of the amino acid histidine8, a process that has not previously been linked to methotrexate sensitivity. In cultured cancer cells, depletion of several genes in the histidine degradation pathway markedly decreased sensitivity to methotrexate. Mechanistically, histidine catabolism drains the cellular pool of tetrahydrofolate, which is particularly detrimental to methotrexate-treated cells. Moreover, expression of the rate-limiting enzyme in histidine catabolism is associated with methotrexate sensitivity in cancer cell lines and with survival rate in patients. In vivo dietary supplementation of histidine increased flux through the histidine degradation pathway and enhanced the sensitivity of leukaemia xenografts to methotrexate. The histidine degradation pathway markedly influences the sensitivity of cancer cells to methotrexate and may be exploited to improve methotrexate efficacy through a simple dietary intervention.


Subject(s)
Histidine/metabolism , Methotrexate/pharmacology , Methotrexate/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Ammonia-Lyases/deficiency , Ammonia-Lyases/genetics , Ammonia-Lyases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Female , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Glutamate Formimidoyltransferase/deficiency , Glutamate Formimidoyltransferase/genetics , Glutamate Formimidoyltransferase/metabolism , Histidine/pharmacology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Multifunctional Enzymes , Nucleotides/biosynthesis , Reduced Folate Carrier Protein/genetics , Reduced Folate Carrier Protein/metabolism , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolates/deficiency , Tetrahydrofolates/metabolism , Xenograft Model Antitumor Assays
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33483422

ABSTRACT

In mammalian cells, nutrients and growth factors signal through an array of upstream proteins to regulate the mTORC1 growth control pathway. Because the full complement of these proteins has not been systematically identified, we developed a FACS-based CRISPR-Cas9 genetic screening strategy to pinpoint genes that regulate mTORC1 activity. Along with almost all known positive components of the mTORC1 pathway, we identified many genes that impact mTORC1 activity, including DCAF7, CSNK2B, SRSF2, IRS4, CCDC43, and HSD17B10 Using the genome-wide screening data, we generated a focused sublibrary containing single guide RNAs (sgRNAs) targeting hundreds of genes and carried out epistasis screens in cells lacking nutrient- and stress-responsive mTORC1 modulators, including GATOR1, AMPK, GCN2, and ATF4. From these data, we pinpointed mitochondrial function as a particularly important input into mTORC1 signaling. While it is well appreciated that mitochondria signal to mTORC1, the mechanisms are not completely clear. We find that the kinases AMPK and HRI signal, with varying kinetics, mitochondrial distress to mTORC1, and that HRI acts through the ATF4-dependent up-regulation of both Sestrin2 and Redd1. Loss of both AMPK and HRI is sufficient to render mTORC1 signaling largely resistant to mitochondrial dysfunction induced by the ATP synthase inhibitor oligomycin as well as the electron transport chain inhibitors piericidin and antimycin. Taken together, our data reveal a catalog of genes that impact the mTORC1 pathway and clarify the multifaceted ways in which mTORC1 senses mitochondrial dysfunction.


Subject(s)
Activating Transcription Factor 4/genetics , Gene Editing/methods , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/genetics , Protein Serine-Threonine Kinases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/genetics , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Activating Transcription Factor 4/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acids/deficiency , Amino Acids/pharmacology , Antimycin A/analogs & derivatives , Antimycin A/pharmacology , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Culture Media/chemistry , Culture Media/pharmacology , Gene Expression Regulation , Genome, Human , Glucose/deficiency , Glucose/pharmacology , HEK293 Cells , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oligomycins/pharmacology , Protein Serine-Threonine Kinases/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Signal Transduction , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
6.
Proc Natl Acad Sci U S A ; 116(1): 303-312, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30541894

ABSTRACT

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


Subject(s)
Epitopes/immunology , Mitochondria/immunology , Animals , Hepatocytes/metabolism , Immunoblotting , Lipids/physiology , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria, Liver/chemistry , Mitochondria, Liver/immunology , Mitochondria, Liver/metabolism , Mitochondria, Liver/physiology , Proteomics/methods
7.
bioRxiv ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39253442

ABSTRACT

Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for genetic Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.

8.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38187626

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

9.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645260

ABSTRACT

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.

10.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787918

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Metabolomics , Tumor Microenvironment , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/chemistry , Carcinoma, Renal Cell/pathology , Kidney/metabolism , Kidney/pathology , Lipidomics , Principal Component Analysis , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/chemistry , Kidney Neoplasms/pathology , Glucose/analysis
11.
Nat Metab ; 6(9): 1668-1681, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39160333

ABSTRACT

Metastases arise from subsets of cancer cells that disseminate from the primary tumour1,2. The ability of cancer cells to thrive in a new tissue site is influenced by genetic and epigenetic changes that are important for disease initiation and progression, but these factors alone do not predict if and where cancers metastasize3,4. Specific cancer types metastasize to consistent subsets of tissues, suggesting that primary tumour-associated factors influence where cancers can grow. We find primary and metastatic pancreatic tumours have metabolic similarities and that the tumour-initiating capacity and proliferation of both primary-derived and metastasis-derived cells is favoured in the primary site relative to the metastatic site. Moreover, propagating cells as tumours in the lung or the liver does not enhance their relative ability to form large tumours in those sites, change their preference to grow in the primary site, nor stably alter aspects of their metabolism relative to primary tumours. Primary liver and lung cancer cells also exhibit a preference to grow in their primary site relative to metastatic sites. These data suggest cancer tissue of origin influences both primary and metastatic tumour metabolism and may impact where cancer cells can metastasize.


Subject(s)
Cell Proliferation , Neoplasm Metastasis , Humans , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor
12.
Cell Rep ; 42(9): 113023, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37691145

ABSTRACT

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.


Subject(s)
Ferroptosis , Phosphatidylinositols , Cell Line , Fatty Acids, Unsaturated , Phosphatidylinositols/metabolism , Phospholipids/metabolism , Humans
13.
Science ; 381(6664): 1316-1323, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37733872

ABSTRACT

Although tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.


Subject(s)
Antigens, Neoplasm , Electron Transport Complex II , Electron Transport Complex I , Mitochondria , Neoplasms , Humans , Antigen Presentation , Antigens, Neoplasm/immunology , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Electrons , Gene Knockout Techniques , Histones/metabolism , HSP40 Heat-Shock Proteins/genetics , Melanoma/immunology , Melanoma/pathology , Methylation , Mitochondria/enzymology , Neoplasms/immunology , Neoplasms/pathology , Cell Line, Tumor
14.
Cell Chem Biol ; 30(9): 1156-1168.e7, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37689063

ABSTRACT

A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.


Subject(s)
Cell Culture Techniques , High-Throughput Screening Assays , Humans , Cell Line , Small Molecule Libraries/pharmacology
15.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909640

ABSTRACT

A challenge for screening new candidate drugs to treat cancer is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels to propagate cells. Which nutrients are available can influence how cancer cells use metabolism to proliferate and impact sensitivity to some drugs, but a general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To enable screening of compounds to determine how the nutrient environment impacts drug efficacy, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We used this system to screen several small molecule libraries and found that compounds targeting metabolic enzymes were enriched as having differential efficacy in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.

16.
Science ; 377(6601): 47-56, 2022 07.
Article in English | MEDLINE | ID: mdl-35771919

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) kinase controls growth in response to nutrients, including the amino acid leucine. In cultured cells, mTORC1 senses leucine through the leucine-binding Sestrin proteins, but the physiological functions and distribution of Sestrin-mediated leucine sensing in mammals are unknown. We find that mice lacking Sestrin1 and Sestrin2 cannot inhibit mTORC1 upon dietary leucine deprivation and suffer a rapid loss of white adipose tissue (WAT) and muscle. The WAT loss is driven by aberrant mTORC1 activity and fibroblast growth factor 21 (FGF21) production in the liver. Sestrin expression in the liver lobule is zonated, accounting for zone-specific regulation of mTORC1 activity and FGF21 induction by leucine. These results establish the mammalian Sestrins as physiological leucine sensors and reveal a spatial organization to nutrient sensing by the mTORC1 pathway.


Subject(s)
Diet , Leucine , Liver , Mechanistic Target of Rapamycin Complex 1 , Sestrins , Adipose Tissue, White/enzymology , Animals , Leucine/metabolism , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Sestrins/metabolism , Signal Transduction
17.
Nat Metab ; 3(11): 1500-1511, 2021 11.
Article in English | MEDLINE | ID: mdl-34799701

ABSTRACT

Folate metabolism can be an effective target for cancer treatment. However, standard cell culture conditions utilize folic acid, a non-physiological folate source for most tissues. We find that the enzyme that couples folate and methionine metabolic cycles, methionine synthase, is required for cancer cell proliferation and tumour growth when 5-methyl tetrahydrofolate (THF), the major folate found in circulation, is the extracellular folate source. In such physiological conditions, methionine synthase incorporates 5-methyl THF into the folate cycle to maintain intracellular levels of the folates needed for nucleotide production. 5-methyl THF can sustain intracellular folate metabolism in the absence of folic acid. Therefore, cells exposed to 5-methyl THF are more resistant to methotrexate, an antifolate drug that specifically blocks folic acid incorporation into the folate cycle. Together, these data argue that the environmental folate source has a profound effect on folate metabolism, determining how both folate cycle enzymes and antifolate drugs impact proliferation.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Neoplasms/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Folic Acid/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Methotrexate/pharmacology , Neoplasms/etiology , Neoplasms/pathology , Tetrahydrofolates/metabolism
18.
Science ; 374(6572): 1227-1237, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34855504

ABSTRACT

For electrons to continuously enter and flow through the mitochondrial electron transport chain (ETC), they must ultimately land on a terminal electron acceptor (TEA), which is known to be oxygen in mammals. Paradoxically, we find that complex I and dihydroorotate dehydrogenase (DHODH) can still deposit electrons into the ETC when oxygen reduction is impeded. Cells lacking oxygen reduction accumulate ubiquinol, driving the succinate dehydrogenase (SDH) complex in reverse to enable electron deposition onto fumarate. Upon inhibition of oxygen reduction, fumarate reduction sustains DHODH and complex I activities. Mouse tissues display varying capacities to use fumarate as a TEA, most of which net reverse the SDH complex under hypoxia. Thus, we delineate a circuit of electron flow in the mammalian ETC that maintains mitochondrial functions under oxygen limitation.


Subject(s)
Electron Transport , Electrons , Fumarates/metabolism , Animals , Cell Hypoxia , Cell Line , Cell Line, Tumor , Dihydroorotate Dehydrogenase/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Oxidation-Reduction , Oxygen/metabolism , Succinate Dehydrogenase/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism
19.
Nat Metab ; 2(9): 893-901, 2020 09.
Article in English | MEDLINE | ID: mdl-32719541

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) kinase regulates cell growth by setting the balance between anabolic and catabolic processes. To be active, mTORC1 requires the environmental presence of amino acids and glucose. While a mechanistic understanding of amino acid sensing by mTORC1 is emerging, how glucose activates mTORC1 remains mysterious. Here, we used metabolically engineered human cells lacking the canonical energy sensor AMP-activated protein kinase to identify glucose-derived metabolites required to activate mTORC1 independent of energetic stress. We show that mTORC1 senses a metabolite downstream of the aldolase and upstream of the GAPDH-catalysed steps of glycolysis and pinpoint dihydroxyacetone phosphate (DHAP) as the key molecule. In cells expressing a triose kinase, the synthesis of DHAP from DHA is sufficient to activate mTORC1 even in the absence of glucose. DHAP is a precursor for lipid synthesis, a process under the control of mTORC1, which provides a potential rationale for the sensing of DHAP by mTORC1.


Subject(s)
Dihydroxyacetone Phosphate/physiology , Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Dihydroxyacetone/metabolism , Dihydroxyacetone Phosphate/biosynthesis , Energy Metabolism , Fructose-Bisphosphate Aldolase/metabolism , Glucose/deficiency , Glycolysis , HEK293 Cells , Humans , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , TOR Serine-Threonine Kinases/genetics
20.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33087354

ABSTRACT

The nicotinamide adenine dinucleotide (NAD+/NADH) pair is a cofactor in redox reactions and is particularly critical in mitochondria as it connects substrate oxidation by the tricarboxylic acid (TCA) cycle to adenosine triphosphate generation by the electron transport chain (ETC) and oxidative phosphorylation. While a mitochondrial NAD+ transporter has been identified in yeast, how NAD enters mitochondria in metazoans is unknown. Here, we mine gene essentiality data from human cell lines to identify MCART1 (SLC25A51) as coessential with ETC components. MCART1-null cells have large decreases in TCA cycle flux, mitochondrial respiration, ETC complex I activity, and mitochondrial levels of NAD+ and NADH. Isolated mitochondria from cells lacking or overexpressing MCART1 have greatly decreased or increased NAD uptake in vitro, respectively. Moreover, MCART1 and NDT1, a yeast mitochondrial NAD+ transporter, can functionally complement for each other. Thus, we propose that MCART1 is the long sought mitochondrial transporter for NAD in human cells.

SELECTION OF CITATIONS
SEARCH DETAIL