Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 629(8013): 901-909, 2024 May.
Article in English | MEDLINE | ID: mdl-38658756

ABSTRACT

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Subject(s)
Cholangitis, Sclerosing , Gastrointestinal Microbiome , Inflammation , Liver , Macrophages , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Female , Humans , Male , Mice , Bacteroidetes/metabolism , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/microbiology , Cholangitis, Sclerosing/pathology , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Interleukin-10/immunology , Interleukin-10/metabolism , Liver/immunology , Liver/pathology , Liver/microbiology , Macrophages/cytology , Macrophages/immunology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Portal Vein , Receptors, Immunologic/deficiency , Receptors, Immunologic/metabolism , Single-Cell Analysis , Symbiosis/immunology
2.
Immunol Rev ; 317(1): 95-112, 2023 08.
Article in English | MEDLINE | ID: mdl-36815685

ABSTRACT

Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.


Subject(s)
Dermatitis, Atopic , Skin Diseases , Humans , Animals , Mice , Prostaglandins , Skin , Fatty Acids
3.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38006376

ABSTRACT

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Subject(s)
Alcaligenes , Lipid A , Animals , Mice , Lipid A/pharmacology , Adjuvants, Immunologic/pharmacology , Dendritic Cells
4.
Immunity ; 44(3): 634-646, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26982365

ABSTRACT

Physical separation between the mammalian immune system and commensal bacteria is necessary to limit chronic inflammation. However, selective species of commensal bacteria can reside within intestinal lymphoid tissues of healthy mammals. Here, we demonstrate that lymphoid-tissue-resident commensal bacteria (LRC) colonized murine dendritic cells and modulated their cytokine production. In germ-free and antibiotic-treated mice, LRCs colonized intestinal lymphoid tissues and induced multiple members of the IL-10 cytokine family, including dendritic-cell-derived IL-10 and group 3 innate lymphoid cell (ILC3)-derived IL-22. Notably, IL-10 limited the development of pro-inflammatory Th17 cell responses, and IL-22 production enhanced LRC colonization in the steady state. Furthermore, LRC colonization protected mice from lethal intestinal damage in an IL-10-IL-10R-dependent manner. Collectively, our data reveal a unique host-commensal-bacteria dialog whereby selective subsets of commensal bacteria interact with dendritic cells to facilitate tissue-specific responses that are mutually beneficial for both the host and the microbe.


Subject(s)
Bordetella Infections/immunology , Bordetella/immunology , Dendritic Cells/immunology , Interleukin-10/metabolism , Intestines/immunology , Lymphoid Tissue/immunology , Th17 Cells/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/microbiology , Interleukin-10/genetics , Interleukins/genetics , Interleukins/metabolism , Intestines/microbiology , Lymphoid Tissue/microbiology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microbiota , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , Symbiosis/genetics , Th17 Cells/microbiology , Interleukin-22
5.
Immunity ; 45(6): 1299-1310, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28002730

ABSTRACT

Particulate pollution is thought to function as an adjuvant that can induce allergic responses. However, the exact cell types and immunological factors that initiate the lung-specific immune responses are unclear. We found that upon intratracheal instillation, particulates such as aluminum salts and silica killed alveolar macrophages (AMs), which then released interleukin-1α (IL-1α) and caused inducible bronchus-associated lymphoid tissue (iBALT) formation in the lung. IL-1α release continued for up to 2 weeks after particulate exposure, and type-2 allergic immune responses were induced by the inhalation of antigen during IL-1α release and iBALT formation, even long after particulate instillation. Recombinant IL-1α was sufficient to induce iBALTs, which coincided with subsequent immunoglobulin E responses, and IL-1-receptor-deficient mice failed to induce iBALT formation. Therefore, the AM-IL-1α-iBALT axis might be a therapeutic target for particulate-induced allergic inflammation.


Subject(s)
Bronchi/immunology , Interleukin-1alpha/immunology , Lymphoid Tissue/immunology , Macrophages, Alveolar/pathology , Particulate Matter/toxicity , Aluminum Compounds/toxicity , Animals , Female , Mice , Mice, Inbred C57BL , Silicon Dioxide/toxicity
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35027453

ABSTRACT

Paneth cells are intestinal epithelial cells that release antimicrobial peptides, such as α-defensin as part of host defense. Together with mesenchymal cells, Paneth cells provide niche factors for epithelial stem cell homeostasis. Here, we report two subtypes of murine Paneth cells, differentiated by their production and utilization of fucosyltransferase 2 (Fut2), which regulates α(1,2)fucosylation to create cohabitation niches for commensal bacteria and prevent invasion of the intestine by pathogenic bacteria. The majority of Fut2- Paneth cells were localized in the duodenum, whereas the majority of Fut2+ Paneth cells were in the ileum. Fut2+ Paneth cells showed higher granularity and structural complexity than did Fut2- Paneth cells, suggesting that Fut2+ Paneth cells are involved in host defense. Signaling by the commensal bacteria, together with interleukin 22 (IL-22), induced the development of Fut2+ Paneth cells. IL-22 was found to affect the α-defensin secretion system via modulation of Fut2 expression, and IL-17a was found to increase the production of α-defensin in the intestinal tract. Thus, these intestinal cytokines regulate the development and function of Fut2+ Paneth cells as part of gut defense.


Subject(s)
Cytokines/metabolism , Fucosyltransferases/metabolism , Gastrointestinal Microbiome/physiology , Paneth Cells/metabolism , Animals , Fucosyltransferases/genetics , Ileum , Interleukin-17/metabolism , Interleukins/metabolism , Mice , Symbiosis , alpha-Defensins/metabolism , Interleukin-22 , Galactoside 2-alpha-L-fucosyltransferase
7.
Gut ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926079

ABSTRACT

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.

8.
J Am Chem Soc ; 146(3): 2237-2247, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38196121

ABSTRACT

The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.


Subject(s)
Galactosylceramides , Glycosides , Polysaccharides , Glycosylation , Polysaccharides/chemistry , Amylases/metabolism
9.
Angew Chem Int Ed Engl ; 63(24): e202402922, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38581637

ABSTRACT

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.


Subject(s)
Acetobacter , Lipid A , Lipid A/chemistry , Lipid A/immunology , Lipid A/chemical synthesis , Humans , Mice , Acetobacter/chemistry , Animals , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Glycosylation
10.
Physiol Genomics ; 55(12): 647-653, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37694281

ABSTRACT

The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, Bifidobacterium was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes.NEW & NOTEWORTHY The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.


Subject(s)
Disabled Persons , Gastrointestinal Microbiome , Intellectual Disability , Oryza , Humans , Gastrointestinal Microbiome/genetics , Oryza/genetics , Pilot Projects , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Constipation/microbiology , Delivery of Health Care
11.
Cell Immunol ; 385: 104685, 2023 03.
Article in English | MEDLINE | ID: mdl-36806381

ABSTRACT

Cytotoxic T lymphocytes recognize antigen-derived peptides (epitopes) bound to MHC class I presented on the cell surface of virus-infected cells and cancer cells. To date, numerous pathogen-derived epitopes and cancer cell-specific epitopes have been identified and used in the development of mRNA and peptide vaccines, but much remains unknown regarding the intracellular mechanisms that generate these antigen epitopes. These mechanisms are essential for cytotoxic T cell immunity. In this paper, I outline an innovation pioneered by Professor Nilabh Shastri and me, in which we developed a biochemical system to detect antigen intermediates and illuminated the role of molecular chaperones in antigen processing.


Subject(s)
Antigen Presentation , T-Lymphocytes, Cytotoxic , Epitopes , Peptides/metabolism , Molecular Chaperones/metabolism
12.
Immunity ; 40(4): 530-41, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24726878

ABSTRACT

Mast cells (MCs) mature locally, thus possessing tissue-dependent phenotypes for their critical roles in both protective immunity against pathogens and the development of allergy or inflammation. We previously reported that MCs highly express P2X7, a receptor for extracellular ATP, in the colon but not in the skin. The ATP-P2X7 pathway induces MC activation and consequently exacerbates the inflammation. Here, we identified the mechanisms by which P2X7 expression on MCs is reduced by fibroblasts in the skin, but not in the other tissues. The retinoic-acid-degrading enzyme Cyp26b1 is highly expressed in skin fibroblasts, and its inhibition resulted in the upregulation of P2X7 on MCs. We also noted the increased expression of P2X7 on skin MCs and consequent P2X7- and MC-dependent dermatitis (so-called retinoid dermatitis) in the presence of excessive amounts of retinoic acid. These results demonstrate a unique skin-barrier homeostatic network operating through Cyp26b1-mediated inhibition of ATP-dependent MC activation by fibroblasts.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Dermatitis/immunology , Fibroblasts/immunology , Mast Cells/immunology , Receptors, Purinergic P2X7/metabolism , Skin/metabolism , Adenosine Triphosphate/immunology , Animals , Cell Degranulation/drug effects , Cell Degranulation/genetics , Cytochrome P-450 Enzyme System/genetics , Imidazoles/administration & dosage , Immunity, Innate/drug effects , Immunity, Innate/genetics , Mast Cells/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Microbiota/immunology , Receptors, Purinergic P2X7/genetics , Retinoic Acid 4-Hydroxylase , Skin/immunology , Skin/microbiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Tretinoin/immunology
13.
Cancer Sci ; 113(1): 277-286, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34779109

ABSTRACT

Escherichia coli containing polyketide synthase in the gut microbiota (pks+ E coli) produce a polyketide-peptide genotoxin, colibactin, and are suspected to play a role in the development of colorectal neoplasia. To clarify the role of pks+ E coli in the early stage of tumorigenesis, we investigated whether the pks status of E coli was associated with the prevalence of colorectal neoplasia. This cross-sectional analysis of data from a prospective cohort in Izu Oshima, Japan included asymptomatic residents aged 40-79 years who underwent screening colonoscopy and provided a stool sample. We identified 543 participants with colorectal neoplasia (22 colorectal cancer and 521 adenoma) as cases and 425 participants with normal colon as controls. The pks status of E coli was assayed using stool DNA and specific primers that detected pks+ E coli. The proportion of pks+ E coli was 32.6% among cases and 30.8% among controls. Compared with those with pks- E coli, the odds ratio (OR) (95% confidence interval) for participants with pks+ E coli was 1.04 (0.77-1.41) after adjusting for potential confounders. No statistically significant associations were observed regardless of tumor site or number of colorectal adenoma lesions. However, stratified analyses revealed increased ORs among participants who consumed cereals over the median intake or vegetables under the median intake. Overall, we found no statistically significant association between pks+ E coli and the prevalence of colorectal adenoma lesions among this Japanese cohort. However, positive associations were suggested under certain intake levels of cereals or vegetables.


Subject(s)
Adenoma/epidemiology , Colorectal Neoplasms/epidemiology , Escherichia coli/isolation & purification , Polyketide Synthases/metabolism , Adenoma/microbiology , Adult , Aged , Colonoscopy , Colorectal Neoplasms/microbiology , Cross-Sectional Studies , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Female , Gastrointestinal Microbiome , Humans , Japan/epidemiology , Male , Middle Aged , Prevalence , Prospective Studies
14.
Int Immunol ; 33(3): 171-182, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33038259

ABSTRACT

T-cell development depends on the thymic microenvironment, in which endothelial cells (ECs) play a vital role. Interestingly, vascular permeability of the thymic cortex is lower than in other organs, suggesting the existence of a blood-thymus barrier (BTB). On the other hand, blood-borne molecules and dendritic cells bearing self-antigens are accessible to the medulla, facilitating central tolerance induction, and continuous T-precursor immigration and mature thymocyte egress occur through the vessels at the cortico-medullary junction (CMJ). We found that claudin-5 (Cld5), a membrane protein of tight junctions, was expressed in essentially all ECs of the cortical vasculatures, whereas approximately half of the ECs of the medulla and CMJ lacked Cld5 expression. An intravenously (i.v.) injected biotin tracer hardly penetrated cortical Cld5+ vessels, but it leaked into the medullary parenchyma through Cld5- vessels. Cld5 expression in an EC cell line caused a remarkable increase in trans-endothelial resistance in vitro, and the biotin tracer leaked from the cortical vasculatures in Cldn5-/- mice. Furthermore, i.v.-injected sphingosine-1 phosphate distributed selectively into the medulla through the Cld5- vessels, probably ensuring the egress of CD3high mature thymocytes from Cld5- vessels at the CMJ. These results suggest that distinct Cld5 expression profiles in the cortex and medulla may control the BTB and the T-cell gateway to blood circulation, respectively.


Subject(s)
Capillary Permeability/physiology , Claudin-5/metabolism , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Tight Junctions/physiology , Animals , Cell Differentiation/immunology , Cell Line , Claudin-5/biosynthesis , Endothelial Cells/metabolism , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingosine/analogs & derivatives , Sphingosine/metabolism , T-Lymphocytes/cytology , Thymocytes/metabolism
15.
FASEB J ; 35(4): e21354, 2021 04.
Article in English | MEDLINE | ID: mdl-33749892

ABSTRACT

ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.


Subject(s)
Chemokine CXCL1/metabolism , Dermatitis, Contact/prevention & control , Eicosapentaenoic Acid/analogs & derivatives , Keratinocytes/drug effects , Animals , Antibodies, Monoclonal/drug effects , Antibodies, Monoclonal/metabolism , Bone Marrow Cells , Chemokine CXCL1/genetics , Diet , Dinitrofluorobenzene , Down-Regulation , Eicosapentaenoic Acid/pharmacology , Female , Gene Expression Regulation/drug effects , HaCaT Cells , Humans , Linseed Oil/administration & dosage , Linseed Oil/metabolism , Mice
16.
BMC Pulm Med ; 22(1): 138, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395844

ABSTRACT

BACKGROUND: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is considered to be associated with chronic inflammation; however, the underlying mechanism remains unclear. Recently, altered gut microbiota were found in patients with pulmonary arterial hypertension (PAH) and in experimental PAH models. The aim of this study was to characterize the gut microbiota in patients with CTEPH and assess the relationship between gut dysbiosis and inflammation in CTEPH. METHODS: In this observational study, fecal samples were collected from 11 patients with CTEPH and 22 healthy participants. The abundance of gut microbiota in these fecal samples was assessed using 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Inflammatory cytokine and endotoxin levels were also assessed in patients with CTEPH and control participants. RESULTS: The levels of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and macrophage inflammatory protein (MIP)-1α were elevated in patients with CTEPH. Plasma endotoxin levels were significantly increased in patients with CTEPH (P < 0.001), and were positively correlated with TNF-α, IL-6, IL-8, and MIP-1α levels. The 16S rRNA gene sequencing and the principal coordinate analysis revealed the distinction in the gut microbiota between patients with CTEPH (P < 0.01) and control participants as well as the decreased bacterial alpha-diversity in patients with CTEPH. A random forest analysis for predicting the distinction in gut microbiota revealed an accuracy of 80.3%. CONCLUSION: The composition of the gut microbiota in patients with CTEPH was distinct from that of healthy participants, which may be associated with the elevated inflammatory cytokines and endotoxins in CTEPH.


Subject(s)
Gastrointestinal Microbiome , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Cytokines , Endotoxins , Humans , Inflammation , Interleukin-8 , Japan , RNA, Ribosomal, 16S/genetics , Tumor Necrosis Factor-alpha
17.
BMC Microbiol ; 21(1): 196, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34182940

ABSTRACT

BACKGROUND: Colibactin-producing Escherichia coli containing polyketide synthase (pks+ E. coli) has been shown to be involved in colorectal cancer (CRC) development through gut microbiota analysis in animal models. Stool status has been associated with potentially adverse gut microbiome profiles from fecal analysis in adults. We examined the association between stool patterns and the prevalence of pks+ E. coli isolated from microbiota in fecal samples of 224 healthy Japanese individuals. RESULTS: Stool patterns were determined through factorial analysis using a previously validated questionnaire that included stool frequency, volume, color, shape, and odor. Factor scores were classified into tertiles. The prevalence of pks+ E. coli was determined by using specific primers for pks+ E. coli in fecal samples. Plasma and fecal fatty acids were measured via gas chromatography-mass spectrometry. The prevalence of pks+ E. coli was 26.8%. Three stool patterns identified by factorial analysis accounted for 70.1% of all patterns seen (factor 1: lower frequency, darker color, and harder shape; factor 2: higher volume and softer shape; and factor 3: darker color and stronger odor). Multivariable-adjusted odds ratios (95% confidence intervals) of the prevalence of pks+ E. coli for the highest versus the lowest third of the factor 1 score was 3.16 (1.38 to 7.24; P for trend = 0.006). This stool pattern exhibited a significant positive correlation with fecal isobutyrate, isovalerate, valerate, and hexanoate but showed a significant negative correlation with plasma eicosenoic acid and α-linoleic acid, as well as fecal propionate and succinate. No other stool patterns were significant. CONCLUSIONS: These results suggest that stool patterns may be useful in the evaluation of the presence of tumorigenic bacteria and fecal fatty acids through self-monitoring of stool status without the requirement for specialist technology or skill. Furthermore, it may provide valuable insight about effective strategies for the early discovery of CRC.


Subject(s)
Colorectal Neoplasms/microbiology , Fatty Acids/analysis , Fatty Acids/blood , Feces/chemistry , Feces/microbiology , Adult , Gastrointestinal Microbiome/genetics , Humans , Japan , Prevalence
18.
BMC Microbiol ; 21(1): 235, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429063

ABSTRACT

BACKGROUND: The Escherichia coli strain that is known to produce the genotoxic secondary metabolite colibactin is linked to colorectal oncogenesis. Therefore, understanding the properties of such colibactin-positive E. coli and the molecular mechanism of oncogenesis by colibactin may provide us with opportunities for early diagnosis or prevention of colorectal oncogenesis. While there have been major advances in the characterization of colibactin-positive E. coli and the toxin it produces, the infection route of the clb + strain remains poorly characterized. RESULTS: We examined infants and their treatments during and post-birth periods to examine potential transmission of colibactin-positive E. coli to infants. Here, analysis of fecal samples of infants over the first month of birth for the presence of a colibactin biosynthetic gene revealed that the bacterium may be transmitted from mother to infant through intimate contacts, such as natural childbirth and breastfeeding, but not through food intake. CONCLUSIONS: Our finding suggests that transmission of colibactin-positive E. coli appears to be occurring at the very early stage of life of the newborn and hints at the possibility of developing early preventive measures against colorectal cancer.


Subject(s)
Bacterial Toxins/biosynthesis , Carcinogens/metabolism , Colorectal Neoplasms/microbiology , Escherichia coli Infections/transmission , Escherichia coli/pathogenicity , Infectious Disease Transmission, Vertical , Peptides/metabolism , Polyketides/metabolism , Carcinogenesis , Carcinogens/analysis , Colorectal Neoplasms/etiology , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Infections/complications , Escherichia coli Infections/microbiology , Feces/microbiology , Female , Humans , Infant, Newborn , Male , Mothers , Peptides/analysis , Peptides/genetics , Polyketides/analysis
19.
BMC Microbiol ; 21(1): 151, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016052

ABSTRACT

BACKGROUND: Inter-individual variations in gut microbiota composition are observed even among healthy populations. The gut microbiota may exhibit a unique composition depending on the country of origin and race of individuals. To comprehensively understand the link between healthy gut microbiota and host state, it is beneficial to conduct large-scale cohort studies. The aim of the present study was to elucidate the integrated and non-redundant factors associated with gut microbiota composition within the Japanese population by 16S rRNA sequencing of fecal samples and questionnaire-based covariate analysis. RESULTS: A total of 1596 healthy Japanese individuals participated in this study via two independent cohorts, NIBIOHN cohort (n = 954) and MORINAGA cohort (n = 642). Gut microbiota composition was described and the interaction of these microorganisms with metadata parameters such as anthropometric measurements, bowel habits, medical history, and lifestyle were obtained. Thirteen genera, including Alistipes, Anaerostipes, Bacteroides, Bifidobacterium, Blautia, Eubacterium halli group, Faecalibacterium, Fusicatenibacter, Lachnoclostridium, Parabacteroides, Prevotella_9, Roseburia, and Subdoligranulum were predominant among the two cohorts. On the basis of univariate analysis for overall microbiome variation, 18 matching variables exhibited significant association in both cohorts. A stepwise redundancy analysis revealed that there were four common covariates, Bristol Stool Scale (BSS) scores, gender, age, and defecation frequency, displaying non-redundant association with gut microbial variance. CONCLUSIONS: We conducted a comprehensive analysis of gut microbiota in healthy Japanese individuals, based on two independent cohorts, and obtained reliable evidence that questionnaire-based covariates such as frequency of bowel movement and specific dietary habit affects the microbial composition of the gut. To our knowledge, this was the first study to investigate integrated and non-redundant factors associated with gut microbiota among Japanese populations.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/genetics , Cohort Studies , DNA, Bacterial/genetics , Defecation , Feces/microbiology , Feeding Behavior , Female , Healthy Volunteers , Humans , Japan , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Young Adult
20.
Int Immunol ; 32(7): 447-454, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32219308

ABSTRACT

Immune metabolism has been recognized as a new paradigm in the regulation of host immunity. In the environment, there are many micro-organisms including pathogenic and non-pathogenic and/or beneficial ones. Immune cells exhibit various responses against different types of microbes, which seem to be associated with changes in energy metabolism. In addition, dietary nutrition influences host metabolism and consequent responses by immune cells. In this review, we describe the complex network of immune metabolism from the perspectives of nutrition, micro-organisms and host immunity for the control of immunologic health and diseases.


Subject(s)
Bacteria/immunology , Diet , Energy Metabolism/immunology , Nutrition Surveys , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL