Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Chemistry ; 19(45): 15281-9, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24115040

ABSTRACT

We have developed the first catalytic (in phosphane) Wittig reaction (CWR). The utilization of an organosilane was pivotal for success as it allowed for the chemoselective reduction of a phosphane oxide. Protocol optimization evaluated the phosphane oxide precatalyst structure, loading, organosilane, temperature, solvent, and base. These studies demonstrated that to maintain viable catalytic performance it was necessary to employ cyclic phosphane oxide precatalysts of type 1. Initial substrate studies utilized sodium carbonate as a base, and further experimentation identified N,N-diisopropylethylamine (DIPEA) as a soluble alternative. The use of DIPEA improved the ease of use, broadened the substrate scope, and decreased the precatalyst loading. The optimized protocols were compatible with alkyl, aryl, and heterocyclic (furyl, indolyl, pyridyl, pyrrolyl, and thienyl) aldehydes to produce both di- and trisubstituted olefins in moderate-to-high yields (60-96%) by using a precatalyst loading of 4-10 mol%. Kinetic E/Z selectivity was generally 66:34; complete E selectivity for disubstituted α,ß-unsaturated products was achieved through a phosphane-mediated isomerization event. The CWR was applied to the synthesis of 54, a known precursor to the anti-Alzheimer drug donepezil hydrochloride, on a multigram scale (12.2 g, 74% yield). In addition, to our knowledge, the described CWR is the only transition-/heavy-metal-free catalytic olefination process, excluding proton-catalyzed elimination reactions.

2.
Radiat Res ; 197(4): 376-383, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35030259

ABSTRACT

The relationship between certain chromosomal aberration (CA) types and cell lethality is well established. On that basis we used multi-fluor in situ hybridization (mFISH) to tally the number of mitotic human lymphocytes exposed to graded doses of gamma rays that carried either lethal or nonlethal CA types. Despite the fact that a number of nonlethal complex exchanges were observed, the cells containing them were seldom deemed viable, due to coincident lethal chromosome damage. We considered two model variants for describing the dose responses. The first assumes independent linear-quadratic (LQ) dose response shapes for the yields of both lethal and nonlethal CAs. The second (simplified) variant assumes that the mean number of nonlethal CAs per cell is proportional to the mean number of lethal CAs per cell, meaning that the shapes and magnitudes of both aberration types differ only by a multiplicative proportionality constant. Using these models allowed us to assemble dose response curves for the frequency of aberration-bearing cells that would be expected to survive. This took the form of a joint probability distribution for cells containing ≥1 nonlethal CAs but having zero lethal CAs. The simplified second model variant turned out to be marginally better supported than the first, and the joint probability distribution based on this model yielded a crescent-shaped dose response reminiscent of those observed for mutagenesis and transformation for cells "at risk" (i.e. not corrected for survival). Among the implications of these findings is the suggestion that similarly shaped curves form the basis for deriving metrics associated with radiation risk models.


Subject(s)
Chromosome Aberrations , Mitosis , Dose-Response Relationship, Radiation , Gamma Rays/adverse effects , Humans , In Situ Hybridization, Fluorescence , Lymphocytes , Mitosis/genetics , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL