Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917011

ABSTRACT

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Animals , CHO Cells , Glycosylation , Humans , Trastuzumab/pharmacology , Trastuzumab/metabolism , Fucosyltransferases/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects
2.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30118680

ABSTRACT

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , B7-H1 Antigen/genetics , CTLA-4 Antigen/genetics , Gene Expression Regulation, Neoplastic , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Animals , B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Cell Line, Tumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Glycosylation , Humans , Mammary Glands, Human/cytology , Mammary Glands, Human/drug effects , Mammary Glands, Human/immunology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred NOD , Phosphorylation , Serine/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
3.
Proteomics ; 23(20): e2300143, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37271932

ABSTRACT

Complete coverage of all N-glycosylation sites on the SARS-CoV2 spike protein would require the use of multiple proteases in addition to trypsin. Subsequent identification of the resulting glycopeptides by searching against database often introduces assignment errors due to similar mass differences between different permutations of amino acids and glycosyl residues. By manually interpreting the individual MS2 spectra, we report here the common sources of errors in assignment, especially those introduced by the use of chymotrypsin. We show that by applying a stringent threshold of acceptance, erroneous assignment by the commonly used Byonic software can be controlled within 15%, which can be reduced further if only those also confidently identified by a different search engine, pGlyco3, were considered. A representative site-specific N-glycosylation pattern could be constructed based on quantifying only the overlapping subset of N-glycopeptides identified at higher confidence. Applying the two complimentary glycoproteomic software in a concerted data analysis workflow, we found and confirmed that glycosylation at several sites of an unstable Omicron spike protein differed significantly from those of the stable trimeric product of the parental D614G variant.

4.
Glycobiology ; 32(1): 60-72, 2022 02 26.
Article in English | MEDLINE | ID: mdl-34735575

ABSTRACT

Extensive glycosylation of the spike protein of severe acute respiratory syndrome coronavirus 2 virus not only shields the major part of it from host immune responses, but glycans at specific sites also act on its conformation dynamics and contribute to efficient host receptor binding, and hence infectivity. As variants of concern arise during the course of the coronavirus disease of 2019 pandemic, it is unclear if mutations accumulated within the spike protein would affect its site-specific glycosylation pattern. The Alpha variant derived from the D614G lineage is distinguished from others by having deletion mutations located right within an immunogenic supersite of the spike N-terminal domain (NTD) that make it refractory to most neutralizing antibodies directed against this domain. Despite maintaining an overall similar structural conformation, our mass spectrometry-based site-specific glycosylation analyses of similarly produced spike proteins with and without the D614G and Alpha variant mutations reveal a significant shift in the processing state of N-glycans on one specific NTD site. Its conversion to a higher proportion of complex type structures is indicative of altered spatial accessibility attributable to mutations specific to the Alpha variant that may impact its transmissibility. This and other more subtle changes in glycosylation features detected at other sites provide crucial missing information otherwise not apparent in the available cryogenic electron microscopy-derived structures of the spike protein variants.


Subject(s)
COVID-19/epidemiology , Glycopeptides/chemistry , Mutation , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , COVID-19/virology , Carbohydrate Sequence , Datasets as Topic , Glycopeptides/genetics , Glycopeptides/metabolism , Glycosylation , HEK293 Cells , Humans , Mass Spectrometry , Peptide Mapping , Polysaccharides/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743105

ABSTRACT

The dystrophin-glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5'-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.


Subject(s)
Dystroglycans , Neoplasms , RNA Nucleotidyltransferases/metabolism , Dystroglycans/genetics , Dystroglycans/metabolism , Glycerol/metabolism , Glycerophosphates , Humans , Phosphates/metabolism , Polysaccharides/metabolism , Up-Regulation
6.
Biochem Biophys Res Commun ; 579: 8-14, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34583196

ABSTRACT

α-Dystroglycan (α-DG) is a glycoprotein specifically modified with O-mannosyl glycans bearing long polysaccharides, termed matriglycans, which comprise repeating units of glucuronic acid and xylose. The matriglycan is linked to the O-mannosyl glycan core through two ribitol phosphate units that can be replaced with glycerol phosphate (GroP) units synthesized by fukutin and fukutin-related protein that transfer GroP from CDP-Gro. Here, we found that forced expression of the bacterial CDP-Gro synthase, TagD, from Bacillus subtilis could result in the overproduction of CDP-Gro in human colon carcinoma HCT116 cells. Western blot and liquid chromatography-tandem mass spectrometry analyses indicated that α-DG prepared from the TagD-expressing HCT116 cells contained abundant GroP and lacked matriglycans. Using the GroP-containing recombinant α-DG-Fc, we developed a novel monoclonal antibody, termed DG2, that reacts with several truncated glycoforms of α-DG, including GroP-terminated glycoforms lacking matriglycans; we verified the reactivity of DG2 against various types of knockout cells deficient in the biosynthesis of matriglycans. Accordingly, forced expression of TagD in HCT116 cells resulted in the reduction of matriglycans and an increase in DG2 reactivity. Collectively, our results indicate that DG2 could serve as a useful tool to determine tissue distribution and function of α-DG lacking matriglycans under physiological and pathophysiological conditions.


Subject(s)
Antibodies, Monoclonal/chemistry , Dystroglycans/chemistry , Laminin/chemistry , Protein Isoforms/chemistry , Animals , Bacillus subtilis , CRISPR-Cas Systems , Chromatography, Liquid , DNA, Complementary/metabolism , Female , Glucuronic Acid/chemistry , Glycopeptides/chemistry , HCT116 Cells , Humans , Mass Spectrometry , Mice , Mice, Inbred BALB C , Phosphates , Polysaccharides , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Ribitol/chemistry , Xylose
7.
Anal Chem ; 92(11): 7612-7620, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32384234

ABSTRACT

Although recent advances in mass spectrometry (MS) have enabled meaningful glycoproteomic undertakings, many technical limitations remain unsolved. Among these, the ability to efficiently sequence the peptide backbone for de novo identification, delineating multiple N- and O-glycosylation sites on single glycopeptides, and deriving more glycan structure information to discriminate isomeric glycoforms are well acknowledged practical problems to be tackled. To address these issues, we explored the use of negative-mode MS2/MS3 fragmentation to supplement current nanoLC-MS2-based sequencing and identification of intact glycopeptides largely performed in positive mode. Consistent with previous reports by others, we found that sulfation and sialylation drastically alter the MS2 fragmentation pattern of glycopeptides in negative mode and the characteristic features identified can be utilized to program the most informative MS3 on the glycan moiety itself. Importantly, direct elimination of one or more O-glycans under negative-mode MS2 affords an easy way to discover additional O-glycosylations on a multiply glycosylated peptide by virtue of enumerating the dehydration scars imprinted on the O-glycosylated sites. Moreover, the characteristic peptide core ion carrying a ring cleavage remnant of the innermost amino sugar residue of an N-glycan can be relied upon to filter out all related N-glycopeptides carrying additional O-glycans defined by specific mass increments. Such enhanced ability to advance from definitive identification of single to multiple site-specific glycosylation on the same peptide backbones is anticipated to have a significant impact on the level of structural and biological insights one can gain in glycoproteomic applications.


Subject(s)
Glycopeptides/analysis , Animals , Cell Line , Chromatography, Liquid , Cricetinae , Glycosylation , Humans , Tandem Mass Spectrometry
8.
Mol Cell Proteomics ; 15(11): 3424-3434, 2016 11.
Article in English | MEDLINE | ID: mdl-27601598

ABSTRACT

Dystroglycanopathy is a major class of congenital muscular dystrophy caused by a deficiency of functional glycans on α-dystroglycan (αDG) with laminin-binding activity. Recent advances have led to identification of several causative gene products of dystroglycanopathy and characterization of their in vitro enzymatic activities. However, the in vivo functional roles remain equivocal for enzymes such as ISPD, FKTN, FKRP, and TMEM5 that are supposed to be involved in post-phosphoryl modifications linking the GalNAc-ß3-GlcNAc-ß4-Man-6-phosphate core and the outer laminin-binding glycans. Herein, by direct nano-LC-MS2/MS3 analysis of tryptic glycopeptides derived from a truncated recombinant αDG expressed in the wild-type and a panel of mutated cells deficient in one of these enzymes, we sought to define the full extent of variable modifications on this phosphorylated core O-glycan at the functional Thr317/Thr319 sites. We showed that the most abundant glycoforms carried a phosphorylated core at each of the two sites, with and without a single ribitol phosphate (RboP) extending from terminal HexNAc. At much lower signal intensity, a novel substituent tentatively assigned as glycerol phosphate (GroP) was additionally detected. As expected, tandem RboP extended with a GlcA-Xyl unit was only identified in wild type, whereas knocking out of either ISPD or FKTN prevented formation of RboP. In the absence of FKRP, glycoforms with single but not tandem RboP accumulated, consistent with the suggested role of this enzyme in transferring the second RboP. Intriguingly, the single GroP modification also required functional FKTN whereas absence of TMEM5 significantly hindered only the addition of RboP. Our findings thus revealed additional levels of complexity associated with the core structures, suggesting functional interplay among these enzymes through their interactions. The simplified analytical workflow developed here should facilitate rapid mapping across a wider range of cell types to gain better insights into its physiological relevance.


Subject(s)
Dystroglycans/chemistry , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Walker-Warburg Syndrome/genetics , Gene Knockout Techniques , Genetic Predisposition to Disease , HCT116 Cells , HEK293 Cells , Humans , Pentosyltransferases , Phosphorylation , Proteins/genetics
9.
Proteomics ; 14(1): 87-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24174266

ABSTRACT

The relative amount of high mannose structures within an N-glycomic pool differs from one source to another, but quite often it predominates over the larger size complex type structures carrying biologically important glyco-epitopes. An efficient method to separate these two classes of N-glycans would significantly aid in detecting the lower abundant components by MS. Capitalizing on an initial observation that only high mannose type structures were recovered in the flow-through fraction when peptide-N-glycosidase F digested peptides were passed through a C18 cartridge in 0.1% formic acid, we demonstrated here that native complex type N-glycans can be retained by C18 cartridge and to be efficiently separated from both the smaller high mannose type structures, as well as de-N-glycosylated peptides by stepwise elution with increasing ACN concentration. The weak retention of the largely hydrophilic N-glycans on C18 resin is dependent not only on size but also increased by the presence of α6-fucosylation. This was shown by comparing the resulting N-glycomic profiles of the washed and low-ACN eluted fractions derived from both a human cancer cell line and an insect cell line.


Subject(s)
Glycomics/methods , Glycopeptides/analysis , Glycopeptides/chemistry , Mannose/isolation & purification , Carbohydrate Sequence , Mannose/chemistry , Mass Spectrometry
10.
Glycobiology ; 24(3): 325-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24362443

ABSTRACT

Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.


Subject(s)
Bacterial Proteins/metabolism , Genetic Vectors/genetics , Glycoproteins/metabolism , Ketone Oxidoreductases/metabolism , Animals , Bacterial Proteins/genetics , Baculoviridae/genetics , Biotechnology/methods , Fucose/metabolism , Glycoproteins/genetics , Ketone Oxidoreductases/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera
11.
Glycobiology ; 23(2): 199-210, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065352

ABSTRACT

Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N-acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N-acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.


Subject(s)
Cytidine Monophosphate N-Acetylneuraminic Acid/metabolism , Glycoproteins , Glycosylation , N-Acetylneuraminic Acid , Animals , Cell Line , Genetic Vectors , Glycoproteins/genetics , Glycoproteins/metabolism , Hexosamines/metabolism , Humans , Insecta/cytology , Insecta/metabolism , N-Acetylneuraminic Acid/genetics , N-Acetylneuraminic Acid/metabolism , Nucleotide Transport Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Protein Processing, Post-Translational , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spodoptera/metabolism , Symporters/genetics , Symporters/metabolism
12.
JACS Au ; 3(7): 1864-1875, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502146

ABSTRACT

The intracellular phosphatase domain of the receptor-type protein tyrosine phosphatase alpha (PTPRA) is known to regulate various signaling pathways related to cell adhesion through c-Src kinase activation. In contrast, the functional significance of its relatively short, intrinsically disordered, and heavily glycosylated ectodomain remains unclear. Through detailed mass spectrometry analyses of a combination of protease and glycosidase digests, we now provide the first experimental evidence for its site-specific glycosylation pattern. This includes the occurrence of O-glycan at the N-glycosylation sequon among the more than 30 O-glycosylation sites confidently identified beside the 7 N-glycosylation sites. The closely spaced N- and O-glycans appear to have mutually limited the extent of further galactosylation and sialylation. An immature smaller form of full-length PTPRA was found to be deficient in O-glycosylation, most likely due to failure to transit the Golgi. N-glycosylation, on the other hand, is dispensable for cell surface expression and contributes less than the extensive O-glycosylation to the overall solution structure of the ectodomain. The glycosylation information is combined with the overall structural features of the ectodomain derived from small-angle X-ray scattering and high-speed atomic force microscopy monitoring to establish a dynamic structural model of the densely glycosylated PTPRA ectodomain. The observed high structural flexibility, as manifested by continuous transitioning from fully to partially extended and fold-back conformations, suggests that the receptor-type phosphatase is anchored to the membrane and kept mostly at a monomeric state through an ectodomain shaped and fully shielded by glycosylation.

13.
Anal Bioanal Chem ; 402(9): 2765-76, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22287049

ABSTRACT

Glycoproteins secreted or expressed on the cell surface at specific pathophysiological stages are well-recognized disease biomarkers and therapeutic targets. While mapping of specific glycan structures can be performed at the level of released glycans, site-specific glycosylation and identification of specific protein carriers can only be determined by analysis of glycopeptides. A key enabling step in mass spectrometry (MS)-based glycoproteomics is the ability to selectively or non-selectively enrich for the glycopeptides from a total pool of a digested proteome for MS analysis since the highly heterogeneous glycopeptides are usually present at low abundance and ionize poorly compared with non-glycosylated peptides. Among the most common approaches for non-destructive and non-glycan-selective glycopeptide enrichment are strategies based on various forms of hydrophilic interaction liquid chromatography (HILIC). We present here a variation of this method using amine-derivatized Fe(3)O(4) nanoparticles, in concert with in situ peptide N-glycosidase F digestion for direct matrix-assisted laser desorption/ionization­mass spectrometry analysis of N-glycosylation sites and the released glycans. Conditions were also optimized for efficient elution of the enriched glycopeptides from the nanoparticles for on-line nanoflow liquid chromatography­MS/MS analysis. Successful applications to single glycoproteins as well as total proteomic mixtures derived from biological fluids established the unrivaled practical versatility of this method, with enrichment efficiency comparable to other HILIC-based methods.


Subject(s)
Glycopeptides/chemistry , Nanoparticles/chemistry , Peptide Mapping/methods , Proteomics/methods , Animals , Chromatography, Liquid , Female , Glycosylation , Magnetics , Mass Spectrometry , Mice , Peptide Mapping/instrumentation , Proteomics/instrumentation
14.
Commun Biol ; 5(1): 676, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831428

ABSTRACT

N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a "Lewis X code", which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering.


Subject(s)
Fucosyltransferases , Lewis X Antigen , Fucosyltransferases/genetics , Glycoproteins/metabolism , Glycosylation , Lewis X Antigen/genetics , Lewis X Antigen/metabolism , Polysaccharides/metabolism
15.
Mol Cell Proteomics ; 8(2): 325-42, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18941134

ABSTRACT

Sperm motility and maturation are known to be affected by a host of factors encountered en route in both male and female genital tracts prior to fertilization. Using a concerted proteomics and glycomics approach with advanced mass spectrometry-based glycan sequencing capability, we show in this work that 24p3, an abundant mouse uterine luminal fluid (ULF) glycoprotein also called lipocalin 2 (Lcn2), is highly fucosylated in the context of carrying multiple Lewis X and Y epitopes on complex type N-glycans at its single glycosylation site. The predominance of Lewis X/Y along with Neu5Acalpha2-6 sialylation was found to be a salient feature of the ULF glycome, and several other protein carriers were additionally identified including the highly abundant lactotransferrin, which is N-glycosylated at two sites, both with a similar range of highly fucosylated N-glycans. A comparative glycomics analysis of the male genital tract fluids revealed that there is a gradient of glycomic complexity from the cauda to caput regions of the epididymis, varying from high mannose to sialylated complex type N-glycans but mostly devoid of fucosylation. The seminal vesicle fluid glycome, on the other hand, carries equally abundant multimeric Lewis X structures but is distinctively lacking in additional fucosylation of the terminal galactose to give the Lewis Y epitope typifying the glycome of female ULF. One-dimensional shotgun proteomics analysis identified over 40 proteins in the latter, many of which are reported for the first time, and a majority are notably involved in immune defense and antigen processing. Further sperm binding and motility assays suggest that the Lewis X/Y epitopes do contribute to the sperm motility-enhancing activity of 24p3, whereas lactotransferrin is largely inactive in this context despite being similarly glycosylated. These findings underline the importance of glycoproteomics in delineating both the specific glycan structures and their carriers in assigning glycobiological functions.


Subject(s)
Body Fluids/chemistry , Epitopes/metabolism , Glycomics , Lewis Blood Group Antigens/metabolism , Lewis X Antigen/metabolism , Proteomics , Uterus/metabolism , Acute-Phase Proteins/chemistry , Amino Acid Sequence , Animals , Epididymis/metabolism , Female , Fucose/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycosylation , Lipocalin-2 , Lipocalins/chemistry , Male , Mice , Molecular Sequence Data , Neuraminidase/pharmacology , Oncogene Proteins/chemistry , Proteome/analysis , Proteome/chemistry , Seminal Vesicles/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sperm Motility
16.
Biotechnol Lett ; 33(11): 2271-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21744272

ABSTRACT

The bioactive components of Ganoderma formosanum have not yet been characterized. We investigated the immunomodulatory activities of the extracellular polysaccharides produced from a submerged mycelial culture of G. formosanum. The polysaccharides were mainly composed of D-mannose, D-galactose and D-glucose. After gel filtration chromatography, three polysaccharide fractions (PS-F1, PS-F2 and PS-F3) were purified. PS-F2 stimulated mouse RAW264.7 macrophages to produce TNF-α and nitric oxide, and enhanced the phagocytic activity of macrophages. PS-F2 challenge in mice triggered an acute inflammatory response characterized by the recruitment of neutrophils and monocytes, which protected mice from subsequent infection of Listeria monocytogenes. The results indicate that the heteropolysaccharides produced by G. formosanum can activate the innate immune response on macrophages.


Subject(s)
Ganoderma/metabolism , Immunologic Factors/metabolism , Listeria monocytogenes/immunology , Listeriosis/prevention & control , Macrophage Activation/drug effects , Macrophages/immunology , Polysaccharides/metabolism , Animals , Bacterial Load , Cell Line , Chromatography, Gel , Ganoderma/growth & development , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Liver/microbiology , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Monosaccharides/analysis , Neutrophils/immunology , Nitric Oxide/metabolism , Phagocytosis/drug effects , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Spleen/microbiology , Tumor Necrosis Factor-alpha/metabolism
17.
Cancer Immunol Res ; 9(1): 113-122, 2021 01.
Article in English | MEDLINE | ID: mdl-33177111

ABSTRACT

Altered glycosylations, which are associated with expression and activities of glycosyltransferases, can dramatically affect the function of glycoproteins and modify the behavior of tumor cells. ST3GAL1 is a sialyltransferase that adds sialic acid to core 1 glycans, thereby terminating glycan chain extension. In breast carcinomas, overexpression of ST3GAL1 promotes tumorigenesis and correlates with increased tumor grade. In pursuing the role of ST3GAL1 in breast cancer using ST3GAL1-siRNA to knockdown ST3GAL1, we identified CD55 to be one of the potential target proteins of ST3GAL1. CD55 is an important complement regulatory protein, preventing cells from complement-mediated cytotoxicity. CD55 had one N-linked glycosylation site in addition to a Ser/Thr-rich domain, which was expected to be heavily O-glycosylated. Detailed analyses of N- and O-linked oligosaccharides of CD55 released from scramble or ST3GAL1 siRNA-treated breast cancer cells by tandem mass spectrometry revealed that the N-glycan profile was not affected by ST3GAL1 silencing. The O-glycan profile of CD55 demonstrated a shift in abundance to nonsialylated core 1 and monosialylated core 2 at the expense of the disialylated core 2 structure after ST3GAL1 silencing. We also demonstrated that O-linked desialylation of CD55 by ST3GAL1 silencing resulted in increased C3 deposition and complement-mediated lysis of breast cancer cells and enhanced sensitivity to antibody-dependent cell-mediated cytotoxicity. These data demonstrated that ST3GAL1-mediated O-linked sialylation of CD55 acts like an immune checkpoint molecule for cancer cells to evade immune attack and that inhibition of ST3GAL1 is a potential strategy to block CD55-mediated immune evasion.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Breast Neoplasms/pathology , CD55 Antigens/immunology , Immune Evasion/immunology , Sialyltransferases/metabolism , Breast Neoplasms/immunology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycosylation , Humans , RNA, Small Interfering/metabolism , Sialyltransferases/genetics , Sialyltransferases/immunology , beta-Galactoside alpha-2,3-Sialyltransferase
18.
ACS Chem Biol ; 16(11): 2673-2689, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34661385

ABSTRACT

The immunomodulatory family of Siglecs recognizes sialic acid-containing glycans as "self", which is exploited in cancer for immune evasion. The biochemical nature of Siglec ligands remains incompletely understood, with emerging evidence suggesting the importance of carbohydrate sulfation. Here, we investigate how specific sulfate modifications affect Siglec ligands by overexpressing eight carbohydrate sulfotransferases (CHSTs) in five cell lines. Overexpression of three CHSTs─CHST1, CHST2, or CHST4─significantly enhance the binding of numerous Siglecs. Unexpectedly, two other CHSTs (Gal3ST2 and Gal3ST3) diminish Siglec binding, suggesting a new mode to modulate Siglec ligands via sulfation. Results are cell type dependent, indicating that the context in which sulfated glycans are presented is important. Moreover, a pharmacological blockade of N- and O-glycan maturation reveals a cell-type-specific pattern of importance for either class of glycan. Production of a highly homogeneous Siglec-3 (CD33) fragment enabled a mass-spectrometry-based binding assay to determine ≥8-fold and ≥2-fold enhanced affinity for Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc and Neu5Acα2-3Galß1-4(6-O-sulfo)GlcNAc, respectively, over Neu5Acα2-3Galß1-4GlcNAc. CD33 shows significant additivity in affinity (≥28-fold) for the disulfated ligand, Neu5Acα2-3(6-O-sulfo)Galß1-4(6-O-sulfo)GlcNAc. Moreover, joint overexpression of CHST1 with CHST2 in cells greatly enhanced the binding of CD33 and several other Siglecs. Finally, we reveal that CHST1 is upregulated in numerous cancers, correlating with poorer survival rates and sodium chlorate sensitivity for the binding of Siglecs to cancer cell lines. These results provide new insights into carbohydrate sulfation as a general mechanism for tuning Siglec ligands on cells, including in cancer.


Subject(s)
Carbohydrate Metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sulfates/metabolism , Cell Line , Down-Regulation , Humans , Ligands , Mass Spectrometry , N-Acetylneuraminic Acid/metabolism , Neoplasms/metabolism , Protein Binding , Protein Processing, Post-Translational , Up-Regulation
19.
J Am Soc Mass Spectrom ; 29(6): 1166-1178, 2018 06.
Article in English | MEDLINE | ID: mdl-29644550

ABSTRACT

High sensitivity identification of sulfated glycans carried on specific sites of glycoproteins is an important requisite for investigation of molecular recognition events involved in diverse biological processes. However, aiming for resolving site-specific glycosylation of sulfated glycopeptides by direct LC-MS2 sequencing is technically most challenging. Other than the usual limiting factors such as lower abundance and ionization efficiency compared to analysis of non-glycosylated peptides, confident identification of sulfated glycopeptides among the more abundant non-sulfated glycopeptides requires additional considerations in the selective enrichment and detection strategies. Metal oxide has been applied to enrich phosphopeptides and sialylated glycopeptides, but its use to capture sulfated glycopeptides has not been investigated. Likewise, various complementary MS2 fragmentation modes have yet to be tested against sialylated and non-sialylated sulfoglycopeptides due to limited appropriate sample availability. In this study, we have investigated the feasibility of sequencing tryptic sulfated N-glycopeptide and its MS2 fragmentation characteristics by first optimizing the enrichment methods to allow efficient LC-MS detection and MS2 analysis by a combination of CID, HCD, ETD, and EThcD on hybrid and tribrid Orbitrap instruments. Characteristic sulfated glyco-oxonium ions and direct loss of sulfite from precursors were detected as evidences of sulfate modification. It is anticipated that the technical advances demonstrated in this study would allow a feasible extension of our sulfoglycomic analysis to sulfoglycoproteomics. Graphical Abstract ᅟ.


Subject(s)
Glycopeptides/chemistry , N-Acetylneuraminic Acid/analysis , Polysaccharides/chemistry , Sulfates/analysis , Tandem Mass Spectrometry/methods , Animals , Cattle , Chromatography, Liquid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Thyroglobulin/chemistry , Titanium/chemistry
20.
Front Oncol ; 8: 70, 2018.
Article in English | MEDLINE | ID: mdl-29619343

ABSTRACT

The glycome of one of the largest and most exposed human organs, the skin, as well as glycan changes associated with non-melanoma skin cancers have not been studied in detail to date. Skin cancers such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are among the most frequent types of cancers with rising incidence rates in the aging population. We investigated the healthy human skin N- and O-glycome and its changes associated with BCC and SCC. Matched patient samples were obtained from frozen biopsy and formalin-fixed paraffin-embedded tissue samples for glycomics analyses using two complementary glycomics approaches: porous graphitized carbon nano-liquid chromatography electro spray ionization tandem mass spectrometry and capillary gel electrophoresis with laser induced fluorescence detection. The human skin N-glycome is dominated by complex type N-glycans that exhibit almost similar levels of α2-3 and α2-6 sialylation. Fucose is attached exclusively to the N-glycan core. Core 1 and core 2 type O-glycans carried up to three sialic acid residues. An increase of oligomannose type N-glycans and core 2 type O-glycans was observed in BCC and SCC, while α2-3 sialylation levels were decreased in SCC but not in BCC. Furthermore, glycopeptide analyses provided insights into the glycoprotein candidates possibly associated with the observed N-glycan changes, with glycoproteins associated with binding events being the most frequently identified class.

SELECTION OF CITATIONS
SEARCH DETAIL