Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Biomed Sci ; 31(1): 20, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321486

ABSTRACT

BACKGROUND: Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear. METHODS: Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept. RESULTS: Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37+/PD-1+/TIM3+/CD8+ tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1+ and TIM3+ in CD8+ T cells exhibiting reduced tumoricidal activity. CONCLUSIONS: Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37high/PD-1high/TIM3high in tumor-infiltrating CD8+ T cells is a biomarker for poor prognosis in lung cancer patients.


Subject(s)
Lung Neoplasms , Monomeric GTP-Binding Proteins , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/pathology , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Programmed Cell Death 1 Receptor , rab GTP-Binding Proteins , T-Cell Exhaustion , Tumor Microenvironment
2.
Cell Commun Signal ; 22(1): 259, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715050

ABSTRACT

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.


Subject(s)
Deubiquitinating Enzymes , Tumor Microenvironment , Humans , Deubiquitinating Enzymes/metabolism , Immune Evasion , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/enzymology , Neoplasms/metabolism , Tumor Escape , Tumor Microenvironment/immunology , Ubiquitination
3.
Mol Carcinog ; 62(2): 277-287, 2023 02.
Article in English | MEDLINE | ID: mdl-36342355

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is highly resistant to chemoradiation therapy. We aimed to examine whether Nutlin-3, a molecule that suppresses murine double min 2 (MDM2)-mediated p53 and Retinoblastoma (RB) protein degradation leading to downregulation of DNA methyltransferases (DNMTs), can be a novel therapeutic agent for ESCC. We used wild-type and chemoradiation-resistant ESCC cell lines in this study. The expression of DNMTs, p53 and RB, and methylation level of tumor suppressor genes (TSG) were analyzed upon Nutlin-3 treatment. The antitumor efficacy of Nutlin-3 was investigated in ESCC cell lines and xenograft tumor model. TSG protein expression was checked in the excised tumor tissue. Nutlin-3 induced upregulation of p53 and RB and downregulation of DNMTs proteins in the chemoradiation-resistant and aggressive ESCC cells. The methylation level of TSGs was decreased by Nutlin-3. Nutlin-3 inhibits clonogenic growth of ESCC cells and exerts a synergistic cytotoxic-effect when combined with chemotherapeutic agent cisplatin. Moreover, xenograft tumor growth in SCID mice was suppressed by Nutlin-3. The protein expression level of DNMTs was downregulated, and that of TSGs was upregulated by Nutlin-3 treatment in the excised tumor tissue. In conclusion, Nutlin-3 is a potential therapeutic agent that can potentiate the treatment efficacy of chemoradiation-resistant ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Mice , Apoptosis , Cell Line, Tumor , DNA/pharmacology , Enzyme Inhibitors/pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Methyltransferases/metabolism , Methyltransferases/pharmacology , Mice, SCID , Proto-Oncogene Proteins c-mdm2/genetics , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/genetics
4.
J Biomed Sci ; 29(1): 56, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35927755

ABSTRACT

All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.


Subject(s)
Secretory Pathway , Tumor Microenvironment , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport , rab GTP-Binding Proteins/metabolism
5.
J Biomed Sci ; 29(1): 90, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36310172

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of cancer-associated death worldwide with a dismal overall 5-year survival rate of less than 20%. The standard first-line therapy for advanced ESCC is concomitant chemo-radiation therapy (CCRT); however, patients usually develop resistance, resulting in unfavorable outcomes. Therefore, it is urgent to identify the mechanisms underlying CCRT resistance and develop effective treatment strategies. METHODS: Patients' endoscopic biopsy tumor tissues obtained before CCRT treatment were used to perform RNA-seq and GSEA analysis. Immunohistochemical (IHC) staining, chromatin immunoprecipitation (ChIP), and promoter reporter analyses were conducted to investigate the relationship between SOX17 and NRF2. Xenograft mouse models were used to study the role of SOX17/NRF2 axis in tumor growth and the efficacy of carboxymethyl cellulose-coated zero-valent-iron (ZVI@CMC). RESULTS: In this study, a notable gene expression signature associated with NRF2 activation was observed in the poor CCRT responders. Further, IHC staining of endoscopic biopsy of 164 ESCC patients revealed an inverse correlation between NRF2 and SOX17, a tumor-suppressive transcription factor with low expression in ESCC due to promoter hypermethylation. Using ChIP and promoter reporter analyses, we demonstrated that SOX17 was a novel upstream transcriptional suppressor of NRF2. In particular, SOX17low/NRF2high nuclear level significantly correlated with poor CCRT response and poor survival, indicating that the dysregulation of SOX17/NRF2 axis played a pivotal role in CCRT resistance and tumor progression. Notably, the in-house developed nanoparticle ZVI@CMC functioned as an inhibitor of DNA methyltransferases to restore expression of SOX17 that downregulated NRF2, thereby overcoming the resistance in ESCC. Additionally, the combination of ZVI@CMC with radiation treatment significantly augmented anticancer efficacy to inhibit tumor growth in CCRT resistant cancer. CONCLUSION: This study identifies a novel SOX17low/NRF2high signature in ESCC patients with poor prognosis, recognizes SOX17 as a transcriptional repressor of NRF2, and provides a promising strategy targeting SOX17/NRF2 axis to overcome resistance.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Mice , Cell Line, Tumor , Chemoradiotherapy/adverse effects , Chemoradiotherapy/methods , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Gene Expression Regulation, Neoplastic , HMGB Proteins/genetics , HMGB Proteins/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Prognosis , Promoter Regions, Genetic , SOXF Transcription Factors/genetics
6.
J Biomed Sci ; 26(1): 20, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30777052

ABSTRACT

BACKGROUND: Prognosis of esophageal squamous cell carcinoma (ESCC) patients is poor and the concurrent chemoradiation therapy (CCRT) provided to ESCC patients often failed due to resistance. Therefore, development of biomarkers for predicting CCRT response is immensely important. In this study, we evaluated the predicting value of SRY (sex determining region Y)-box 17 (SOX17) protein during CCRT and its dysregulation of transcriptional targets in CCRT resistance in ESCC. METHODS: Pyrosequencing methylation, RT-qPCR and immunohistochemistry assays were performed to examine the DNA methylation, mRNA expression and protein expression levels of SOX17 in endoscopic biopsy from a total of 70 ESCC patients received CCRT. Cell proliferation, clonogenic survival and xenograft growth were used to confirm the sensitization of ESCC cell line KYSE510 in response to cisplatin, radiation or CCRT treatment by SOX17 overexpression in vitro and in vivo. Luciferase activity, RT-qPCR and ChIP-qPCR assays were conducted to examine transcription regulation of SOX17 in KYSE510 parental, KYSE510 radio-resistant cells and their derived xenografts. RESULTS: High DNA methylation coincided with low mRNA and protein expression levels of SOX17 in pre-treatment endoscopic biopsy from ESCC patients with poor CCRT response. SOX17 protein expression exhibited a good prediction performance in discriminating poor CCRT responders from good responder. Overexpression of SOX17 sensitized KYSE510 radio-resistant cells to cisplatin, radiation or CCRT treatment in cell and xenograft models. Importantly, SOX17 transcriptionally down-regulated DNA repair and damage response-related genes including BRCA1, BRCA2, RAD51, KU80 DNAPK, p21, SIRT1, NFAT5 and REV3L in KYSE510 radio-resistant cells to achieve the sensitization effect to anti-cancer treatment. Low expression of BRCA1, DNAPK, p21, RAD51 and SIRT1 was confirmed in SOX17 sensitized xenograft tissues derived from radio-resistant ESCC cells. CONCLUSIONS: Our study reveals a novel mechanism by which SOX17 transcriptionally inactivates DNA repair and damage response-related genes to sensitize ESCC cell or xenograft to CCRT treatment. In addition, we establish a proof-of-concept CCRT prediction biomarker using SOX17 immunohistochemical staining in pre-treatment endoscopic biopsies to identify ESCC patients who are at high risk of CCRT failure and need intensive care.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , SOXF Transcription Factors/genetics , Animals , Cell Line, Tumor , Chemoradiotherapy , DNA Repair/genetics , Down-Regulation , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/radiotherapy , Genetic Markers/genetics , Humans , Mice , Mice, Nude , SOXF Transcription Factors/metabolism
7.
J Biomed Sci ; 23(1): 58, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27484806

ABSTRACT

BACKGROUND: The incidence of lung adenocarcinoma (LUAD) is increasing worldwide with different prognosis even in early-stage patients. We aimed to identify a prognostic panel with multiple DNA methylation biomarkers to predict survival in early-stage LUAD patients of different racial groups. METHODS: The methylation array, pyrosequencing methylation assay, Cox regression and Kaplan-Meier analyses were conducted to build the risk score equations of selected probes in a training cohort of 69 Asian LUAD patients. The risk score model was verified in another cohort of 299 Caucasian LUAD patients in The Cancer Genome Atlas (TCGA) database. RESULTS: We performed a Cox regression analysis, in which the regression coefficients were obtained for eight probes corresponding to eight genes (AGTRL1, ALDH1A3, BDKRB1, CTSE, EFNA2, NFAM1, SEMA4A and TMEM129). The risk score was derived from sum of each methylated probes multiplied by its corresponding coefficient. Patients with the risk score greater than the median value showed poorer overall survival compared with other patients (p = 0.007). Such a risk score significantly predicted patients showing poor survival in TCGA cohort (p = 0.036). A multivariate analysis was further performed to demonstrate that the eight-probe panel association with poor outcome in early-stage LUAD patients remained significant even after adjusting for different clinical variables including staging parameters (hazard ratio, 2.03; p = 0.039). CONCLUSIONS: We established a proof-of-concept prognostic panel consisting of eight-probe signature to predict survival of early-stage LUAD patients of Asian and Caucasian populations.


Subject(s)
Adenocarcinoma , Asian People , Biomarkers, Tumor/metabolism , DNA Methylation , DNA, Neoplasm/metabolism , Lung Neoplasms , White People , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Disease-Free Survival , Female , Follow-Up Studies , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Survival Rate , Taiwan
8.
Bioinformatics ; 30(21): 3054-61, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25015989

ABSTRACT

MOTIVATION: A rapid progression of esophageal squamous cell carcinoma (ESCC) causes a high mortality rate because of the propensity for metastasis driven by genetic and epigenetic alterations. The identification of prognostic biomarkers would help prevent or control metastatic progression. Expression analyses have been used to find such markers, but do not always validate in separate cohorts. Epigenetic marks, such as DNA methylation, are a potential source of more reliable and stable biomarkers. Importantly, the integration of both expression and epigenetic alterations is more likely to identify relevant biomarkers. RESULTS: We present a new analysis framework, using ESCC progression-associated gene regulatory network (GRN escc), to identify differentially methylated CpG sites prognostic of ESCC progression. From the CpG loci differentially methylated in 50 tumor-normal pairs, we selected 44 CpG loci most highly associated with survival and located in the promoters of genes more likely to belong to GRN escc. Using an independent ESCC cohort, we confirmed that 8/10 of CpG loci in the promoter of GRN escc genes significantly correlated with patient survival. In contrast, 0/10 CpG loci in the promoter genes outside the GRN escc were correlated with patient survival. We further characterized the GRN escc network topology and observed that the genes with methylated CpG loci associated with survival deviated from the center of mass and were less likely to be hubs in the GRN escc. We postulate that our analysis framework improves the identification of bona fide prognostic biomarkers from DNA methylation studies, especially with partial genome coverage.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation , Epigenesis, Genetic , Esophageal Neoplasms/genetics , Gene Regulatory Networks , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/mortality , CpG Islands , Disease Progression , Esophageal Neoplasms/mortality , Esophageal Squamous Cell Carcinoma , Humans , Promoter Regions, Genetic
9.
Int J Cancer ; 135(3): 563-73, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24407731

ABSTRACT

The transcriptional network of the SRY (sex determining region Y)-box 17 (SOX17) and the prognostic impact of SOX17 protein expression in human cancers remain largely unclear. In this study, we evaluated the prognostic effect of low SOX17 protein expression and its dysregulation of transcriptional network in esophageal squamous cell carcinoma (ESCC). Low SOX17 protein expression was found in 47.4% (73 of 154) of ESCC patients with predicted poor prognosis. Re-expression of SOX17 in ESCC cells caused reduced foci formation, cell motility, decreased ESCC xenograft growth and metastasis in animals. Knockdown of SOX17 increased foci formation in ESCC and normal esophageal cells. Notably, 489 significantly differential genes involved in cell growth and motility controls were identified by expression array upon SOX17 overexpression and 47 genes contained putative SRY element in their promoters. Using quantitative chromatin immunoprecipitation-PCR and promoter activity assays, we confirmed that MACC1, MALAT1, NBN, NFAT5, CSNK1A1, FN1 and SERBP1 genes were suppressed by SOX17 via the SRY binding-mediated transcriptional regulation. Overexpression of FN1 and MACC1 abolished SOX17-mediated migration and invasion suppression. The inverse correlation between SOX17 and FN1 protein expression in ESCC clinical samples further strengthened our conclusion that FN1 is a transcriptional repression target gene of SOX17. This study provides compelling clinical evidence that low SOX17 protein expression is a prognostic biomarker and novel cell and animal data of SOX17-mediated suppression of ESCC metastasis. We establish the first transcriptional network and identify new suppressive downstream genes of SOX17 which can be potential therapeutic targets for ESCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Neoplasm Recurrence, Local/pathology , SOXF Transcription Factors/genetics , Animals , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/secondary , Cell Movement , Cell Proliferation , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Female , Fibronectins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunoenzyme Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lymphatic Metastasis , Male , Mice , Mice, SCID , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Staging , Prognosis , Promoter Regions, Genetic/genetics , Survival Rate , Trans-Activators , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
10.
Int J Med Sci ; 11(8): 779-87, 2014.
Article in English | MEDLINE | ID: mdl-24936140

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with poor prognosis. We aimed to identify a panel of CpG methylation biomarkers for prognosis prediction of ESCC patients. METHODS: Illumina's GoldenGate methylation array, supervised principal components, Kaplan-Meier survival analyses and Cox regression model were conducted on dissected tumor tissues from a training cohort of 40 ESCC patients to identify potential CpG methylation biomarkers. Pyrosequencing quantitative methylation assay were performed to validate prognostic CpG methylation biomarkers in 61 ESCC patients. The correlation between DNA methylation and RNA expression of a validated marker, SOX17, was examined in a validation cohort of 61 ESCC patients. RESULTS: We identified a panel of nine CpG methylation probes located at promoter or exon1 region of eight genes including DDIT3, FES, FLT3, NTRK3, SEPT5, SEPT9, SOX1, and SOX17, for prognosis prediction in ESCC patients. Risk score calculated using the eight-gene panel statistically predicted poor outcome for patients with high risk score. These eight-gene also showed a significantly higher methylation level in tumor tissues than their corresponding normal samples in all patients analyzed. In addition, we also detected an inverse correlation between CpG hypermethylation and the mRNA expression level of SOX17 gene in ESCC patients, indicating that DNA hypermethylation was responsible for decreased expression of SOX17. CONCLUSIONS: This study established a proof-of-concept CpG methylation biomarker panel for ESCC prognosis that can be further validated by multiple cohort studies. Functional characterization of the eight prognostic methylation genes in our biomarker panel could help to dissect the mechanism of ESCC tumorigenesis.


Subject(s)
Carcinoma, Squamous Cell/genetics , CpG Islands/genetics , DNA Methylation/genetics , Esophageal Neoplasms/genetics , Neoplasm Proteins/biosynthesis , Adult , Aged , Biomarkers, Tumor/genetics , Carcinogenesis , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Proteins/genetics , Prognosis , Promoter Regions, Genetic
11.
Kaohsiung J Med Sci ; 40(7): 642-649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804615

ABSTRACT

Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1ß, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic ß-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.


Subject(s)
Autophagosomes , Autophagy , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , Autophagy/physiology , Humans , Animals , Mice , Autophagosomes/metabolism , Cell Line, Tumor , Microtubule-Associated Proteins/metabolism , Proteomics/methods , Tandem Mass Spectrometry
12.
Biomed Pharmacother ; 176: 116825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820971

ABSTRACT

Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.


Subject(s)
Antibodies, Monoclonal , Cell Proliferation , Chitinase-3-Like Protein 1 , Colorectal Neoplasms , Fibrosis , Lung Neoplasms , Neovascularization, Pathologic , Pancreatic Neoplasms , Animals , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/antagonists & inhibitors , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Mice , Cell Line, Tumor , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Cell Proliferation/drug effects , Antibodies, Monoclonal/pharmacology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Angiogenesis
13.
Cell Death Dis ; 14(10): 671, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821451

ABSTRACT

Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Mutation , Ubiquitination , Ubiquitin/metabolism , Cell Line, Tumor , Ligases/metabolism , Proto-Oncogene Proteins c-met/metabolism , GTP-Binding Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
14.
Cancer Biomark ; 33(3): 369-377, 2022.
Article in English | MEDLINE | ID: mdl-34511486

ABSTRACT

BACKGROUND: Effective biomarkers for prediction of recurrence of lung adenocarcinoma cancer (LADC) patients are needed to determine treatment strategies post-surgery to improve outcome. OBJECTIVE: This study evaluates the efficacy of carboxypeptidase E (CPE) mRNA including its splice isoforms, CPE-ΔN, as a biomarker for predicting recurrence in adenocarcinoma patients. METHODS: RNA was extracted from resected tumors from 86 patients with different stages of non-small cell LADC. cDNA was synthesized and qRT-PCR carried out to determine the copy numbers of CPE/CPE-ΔN mRNA. Patients were followed for 7 years post-tumor resection to determine recurrence and death. RESULTS: ROC curve analysis showed the overall AUC for CPE/CPE-ΔN copy number was 0.563 in predicting recurrence and 0.562 in predicting death. Kaplan-Meier survival analysis showed statistical difference (p= 0.018), indicating that patients with high CPE/CPE-ΔN copy numbers had a shorter time of disease-free survival and also shorter time to death (p= 0.035). Subgroup analyses showed that association of disease-free survival time with CPE/CPE-ΔN copy number was stronger among stage I and II LADC patients (p= 0.047). CONCLUSIONS: CPE/CPE-ΔN mRNA is a potentially useful biomarker for predicting recurrence and death in LADC patients, especially in identifying patients at high risk of recurrence at early stages I and II.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma/surgery , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/surgery , Carboxypeptidase H/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Prognosis , RNA, Messenger/genetics
15.
Theranostics ; 12(1): 340-361, 2022.
Article in English | MEDLINE | ID: mdl-34987649

ABSTRACT

Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.


Subject(s)
Chitinase-3-Like Protein 1/immunology , Immunotherapy/methods , Neoplasms , rab GTP-Binding Proteins/immunology , Animals , Cell Line, Tumor , Cohort Studies , Gene Expression Regulation, Neoplastic , Mice , Mice, Knockout , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment
16.
Clin Epigenetics ; 13(1): 76, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33836808

ABSTRACT

BACKGROUND: Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. RESULTS: Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children's respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (ß = - 1.75, p = 0.015) after adjustment for child's sex, age, BMI, parents' smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65-0.99). CONCLUSIONS: Exposure to BBzP in settled dust might increase children's respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.


Subject(s)
Cytokines/immunology , DNA Methylation/drug effects , DNA Methylation/immunology , Hypersensitivity/immunology , Phthalic Acids/adverse effects , Phthalic Acids/immunology , Child , Cytokines/genetics , Cytokines/urine , DNA Methylation/genetics , Female , Humans , Hypersensitivity/genetics , Hypersensitivity/urine , Male , Phthalic Acids/urine
17.
Theranostics ; 11(14): 7029-7044, 2021.
Article in English | MEDLINE | ID: mdl-34093869

ABSTRACT

Background: Increased IL-6 level, M2 macrophages and PD-1+CD8+ T cells in tumor microenvironments (TME) have been identified to correlate with resistance to checkpoint blockade immunotherapy, yet the mechanism remains poorly understood. Rab small GTPase-mediated trafficking of cytokines is critical in immuno-modulation. We have previously reported dysregulation of Rab37 in lung cancer cells, whereas the roles of Rab37 in tumor-infiltrating immune cells and cancer immunotherapy are unclear. Methods: The tumor growth of the syngeneic mouse allograft in wild type or Rab37 knockout mice was analyzed. Imaging analyses and vesicle isolation were conducted to determine Rab37-mediated IL-6 secretion. STAT3 binding sites at PD-1 promoter in T cells were identified by chromatin immunoprecipitation assay. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37, IL-6 and PD-1 and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from lung cancer patients. Results: We revealed that Rab37 regulates the secretion of IL-6 in a GTPase-dependent manner in macrophages to trigger M2 polarization. Macrophage-derived IL-6 promotes STAT3-dependent PD-1 mRNA expression in CD8+ T cells. Clinically, tumors with high stromal Rab37 and IL-6 expression coincide with tumor infiltrating M2-macrophages and PD1+CD8+ T cells that predicts poor prognosis in lung cancer patients. In addition, lung cancer patients with an increase in plasma IL-6 level are found to be associated with immunotherapeutic resistance. Importantly, combined blockade of IL-6 and CTLA-4 improves survival of tumor-bearing mice by reducing infiltration of PD1+CD8+ T cells and M2 macrophages in TME. Conclusions: Rab37/IL-6 trafficking pathway links with IL-6/STAT3/PD-1 transcription regulation to foster an immunosuppressive TME and combined IL-6/CTLA-4 blockade therapy exerts potent anti-tumor efficacy.


Subject(s)
Interleukin-6/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology , rab GTP-Binding Proteins/metabolism , Allografts , Animals , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Prognosis , Programmed Cell Death 1 Receptor/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Microenvironment/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/ultrastructure
18.
Theranostics ; 10(22): 10001-10015, 2020.
Article in English | MEDLINE | ID: mdl-32929330

ABSTRACT

Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of Kras mutation-driven ZNF322A transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. Methods: Luciferase activity, RT-qPCR and ChIP-qPCR assays were used to examine transcription regulation in cell models. In vitro and in vivo angiogenesis assays were conducted. Immunohistochemistry, Kaplan-Meier method and multivariate Cox regression assays were performed to examine the clinical correlation in tumor specimens from lung cancer patients. Results: We validated that Yin Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation. Reconstitution experiments by knocking down YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration, proliferation and ZNF322A promoter activity. Knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo. Notably, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) gene which encodes a secreted factor that activates pro-angiogenic responses in endothelial cells. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patient samples determined using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A, Shh and CD31 correlated with poor prognosis. Conclusions: These findings highlight the mechanism by which dysregulation of Kras/YY1/ZNF322/Shh transcriptional axis enhances neo-angiogenesis and cancer progression in lung cancer. Therapeutic strategies that target Kras/YY1/ZNF322A/Shh signaling axis may provide new insight on targeted therapy for lung cancer patients.


Subject(s)
Hedgehog Proteins/genetics , Lung Neoplasms/genetics , Neovascularization, Pathologic/genetics , Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics , YY1 Transcription Factor/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells , Humans , Lung/pathology , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/pathology , Oncogenes/genetics , Promoter Regions, Genetic/genetics , Signal Transduction/genetics
19.
Clin Epigenetics ; 12(1): 87, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552862

ABSTRACT

BACKGROUND: Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). RESULTS: By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. CONCLUSION: Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Epigenesis, Genetic/genetics , Metaplasia/genetics , Pancreatic Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Aged , Animals , Cell Differentiation , DNA Methylation/genetics , Disease Models, Animal , Female , Gene Silencing , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Metaplasia/diagnosis , Mice , Middle Aged , Pancreatic Neoplasms/pathology , Pregnancy , Proto-Oncogene Proteins c-vav/genetics , RNA, Messenger/genetics , Trans-Activators/genetics , Tumor Microenvironment/genetics
20.
Oncogene ; 38(41): 6723-6736, 2019 10.
Article in English | MEDLINE | ID: mdl-31399647

ABSTRACT

ZNF322A is an oncogenic zinc-finger transcription factor. Our published results show that ZNF322A positively regulates transcription of alpha-adducin (ADD1) and cyclin D1 (CCND1) to promote tumorgenicity of lung cancer. However, the upstream regulatory mechanisms of ZNF322A protein function remain elusive. Here, we demonstrate that AKT could phosphorylate ZNF322A by in vitro kinase assay and cell-based mass spectrometry analysis. Overexpression of AKT promoted ZNF322A protein stability and transcriptional activity, whereas these effects were inhibited by knockdown of AKT or treating with AKT inhibitor. We studied AKT-mediated phosphorylation sites, viz. Thr-150, Ser-224, Thr-234, and Thr-262. ZNF322A phosphorylation at Thr-262 by AKT promoted ZNF322A protein stability thus increased ADD1 promoter activity. Interestingly, phosphorylation at Thr-150, Ser-224, and Thr-234 enhanced transcription activity without affecting protein stability of ZNF322A. Chromatin immunoprecipitation and DNA affinity precipitation assays showed that ZNF322A phosphorylation defective mutants Thr-150A, Ser-224A, and Thr-234A attenuated chromatin binding and DNA binding affinity to ADD1 and CCND1 promoters compared with wild-type ZNF322A. Furthermore, AKT-mediated Thr-150, Ser-224, Thr-234, and Thr-262 phosphorylation promoted lung cancer cell growth and metastasis in vitro and in vivo. Clinically, expression of phosphorylated ZNF322A (p-ZNF) correlated with actively phosphorylated AKT (p-AKT) in tumor specimens from 150 lung cancer patients. Multivariate Cox regression analysis indicated that combined p-AKT and p-ZNF expression profile was an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of AKT signaling in promoting ZNF322A protein stability and transcriptional activity in lung cancer cell, xenograft, and clinical models.


Subject(s)
Lung Neoplasms/metabolism , Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/metabolism , Humans , Lung Neoplasms/pathology , Neoplasm Metastasis , Phosphorylation , Prognosis , Promoter Regions, Genetic , Protein Stability , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL