Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Assist Reprod Genet ; 41(1): 99-108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38062334

ABSTRACT

PURPOSE: The study aimed to determine the associations among standard sperm characteristics and oxidative/apoptotic markers in ejaculated sperm of men exposed to prolonged scrotal hyperthermia of either environmental or clinical origin. METHODS: The original study design included four research groups: professional drivers (n = 54), infertile men with varicocele (n = 78), infertile men not exposed to prolonged genital heat stress (n = 37), and fertile individuals serving as the control group (n = 29). Standard semen analysis was performed according to the 5th WHO laboratory manual. The following oxidative and apoptotic parameters of sperm were investigated: mitochondrial superoxide anion generation (MitoSOX Red dye), phosphatidylserine externalization (Annexin V binding assay), mitochondrial membrane potential (JC-1 dye), DNA fragmentation (TUNEL/PI assay), and membrane fluidity (merocyanine 540 dye). RESULTS: All the studied groups presented a strong deterioration in routine sperm parameters and a strongly apoptotic phenotype in sperm, characterized by both decreased mitochondrial membrane potential and enhanced DNA fragmentation, regardless of the thermal insult. Significant induction of mitochondrial superoxide anion generation was noted only in the groups exposed to genital heat stress. A positive correlation between the production of superoxide anion in the mitochondrial chain and the level of DNA fragmentation in drivers was also noted. CONCLUSION: Long-term exposure to scrotal hyperthermia in real-life situations is sufficient to reduce sperm quality in humans. The thermal stress directly induces the oxidative stress cascade in ejaculated sperm, affecting the plasma membrane fluidity, mitochondrial homeostasis, and sperm DNA integrity.


Subject(s)
Infertility, Male , Semen , Humans , Male , Semen/metabolism , Superoxides , Spermatozoa/metabolism , Apoptosis , Oxidative Stress , Infertility, Male/genetics , Infertility, Male/metabolism , DNA Fragmentation , Sperm Motility
2.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899311

ABSTRACT

The pathophysiological mechanisms responsible for male subfertility/infertility caused by or complicated by genital heat stress remains unclear in many respects. Because seminal plasma creates the environment for the proper functioning of spermatozoa, in this study, we verified the associations among standard spermiograms, seminal biochemical parameters (neutral alpha-glucosidase, fructose, and citric acid) and oxidative stress markers (total antioxidant capacity, catalase activity, superoxide dismutase activity, and malondialdehyde concentration) in distinct entities associated with male infertility with and without long-time exposure to local hyperthermia. We demonstrated that men exposed to prolonged environmental or clinically recognized local heat stress in adulthood may suffer from dysregulation of seminal antioxidant components, which can be directly associated with epididymal and prostate function. The comparative analysis of the studied parameters showed numerous correlations among all biochemical parameters (particularly neutral alpha-glucosidase) with low standard semen quality in almost all the investigated infertile groups. In light of the data obtained in this originally designed study, we conclude that more attention should be paid to the epididymis and accessory gland function in subfertile and infertile men exposed to genital heat stress, especially in the context of novel treatment algorithms (targeted therapies).


Subject(s)
Biomarkers/metabolism , Heat-Shock Response , Infertility, Male/pathology , Oxidative Stress , Semen Analysis/methods , Spermatozoa/pathology , Adult , Antioxidants/metabolism , Epididymis/metabolism , Epididymis/pathology , Humans , Infertility, Male/etiology , Infertility, Male/metabolism , Male , Malondialdehyde/metabolism , Prostate/metabolism , Prostate/pathology , Spermatozoa/metabolism , Young Adult
3.
Antioxidants (Basel) ; 11(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36290709

ABSTRACT

Our research was designed to verify the relationship between male infertility, basic semen characteristics (with respect to detailed sperm morphology), sperm DNA fragmentation (SDF), oxidation-reduction potential in semen (ORP), and leukocytospermia. The obtained results showed that infertile groups (with or without leukocytospermia) had significantly lower basic semen characteristics and higher SDF, raw ORP, and static ORP (sORP) than fertile controls. The thresholds of 13% SDF (AUC = 0.733) and 1.40 sORP (AUC = 0.857) were predictive values for discriminating infertile from fertile men. In infertile groups, a higher prevalence and risk for >13% SDF and >1.40 sORP were revealed. Unexpectedly, leukocytospermic subjects had lower sORP, prevalence, and risk for >1.40 sORP than leukocytospermic-negative men. These groups did not differ in SDF and raw ORP. Both SDF and sORP negatively correlated with basic semen parameters but positively correlated with sperm head and midpiece defects. sORP positively correlated with sperm tail defects, immature sperm cells with excess residual cytoplasm, and SDF. In turn, raw ORP negatively correlated with sperm count but positively correlated with SDF and sORP. These findings indicate that (1) there is a relationship between male infertility, SDF, and OS in semen; (2) in infertile men, there is a clinically significant risk of SDF and OS irrespective of leukocytospermia; and (3) the assessment of SDF and oxidative stress should be independent of leukocytospermia.

4.
F1000Res ; 11: 591, 2022.
Article in English | MEDLINE | ID: mdl-38434001

ABSTRACT

Background: Because the etiopathogenesis of male infertility is multifactorial our study was designed to clarify the relationship between standard semen parameters, testicular volume, levels of reproductive hormones and the fragmentation of sperm nuclear DNA (SDF). Methods: Patients (n = 130) were clustered as subjects: 1) with an abnormal volume (utrasonography) of at least one testis (<12 mL) or with a normal volume of testes and 2) with abnormal levels of at least one of the reproductive hormones (FSH, LH, PRL, TSH, total T - electrochemiluminescence method) or with normal hormonal profiles and 3) with high level of SDF (>30%), moderate (>15-30%) or low (≤15%) (sperm chromatin dispersion test). Results: In subjects with a decreased testicular volume and in subjects with abnormal levels of reproductive hormones, decreased basic semen parameters were found. Participants with abnormal testicular volume had a higher percentage of SDF and a higher level of FSH (Mann-Whitney U test). In turn, men with a high level of SDF had lower testicular volume and conventional sperm parameters than men with a low level of SDF (Kruskal-Wallis test). Conclusions: We showed that spermatogenesis disorders coexisted with decreased testicular volume and increased FSH levels. The disorders of spermatogenesis were manifested by reduced basic sperm characteristics and a high level of sperm nuclear DNA damage.

5.
Article in English | MEDLINE | ID: mdl-35270405

ABSTRACT

Responding to the need for the verification of some experimental animal studies showing the involvement of oxidative stress in germ cell damage in the heat-induced testis, we investigated the possibility of a direct relationship between seminal oxidative stress markers (total antioxidant capacity, catalase activity, superoxide dismutase activity, and malondialdehyde concentration) and ejaculated sperm chromatin/DNA integrity (DNA fragmentation and chromatin condensation abnormalities) in distinct groups of men exposed and not exposed to prolonged scrotal hyperthermia. A statistical increase in the proportion of sperm with DNA fragmentation was observed in all the studied subgroups compared to the fertile men. In turn, the groups subjected to heat stress as professional drivers or infertile men with varicocele presented greater disturbances in the oxidative stress scavenging system than men not exposed to genital heat stress. Based on the comparative analysis of the studied parameters, we can conclude that alterations in the seminal oxidative stress scavenging system are directly engaged in the pathogenesis of ejaculated sperm DNA damage regardless of the intensity of the impact of thermal insult. To the best of our knowledge, this study, for the first time, revealed the co-existence of oxidative stress and sperm DNA damage in the semen of professional drivers.


Subject(s)
Heat Stress Disorders , Infertility, Male , Animals , Antioxidants/metabolism , Chromatin/metabolism , DNA Damage , Heat Stress Disorders/complications , Heat-Shock Response , Humans , Male , Oxidative Stress , Semen , Sperm Motility , Spermatozoa/metabolism
6.
Article in English | MEDLINE | ID: mdl-34199549

ABSTRACT

Since varicocele is so common in infertile men, this study intends to analyse the relationships between varicocele and conventional semen characteristics, sperm nuclear DNA dispersion and oxidation-reduction potential (ORP) in semen. Varicocele-positive and varicocele-negative infertile men (study groups) showed significantly lower standard sperm parameters and higher sperm DNA fragmentation (SDF) and ORP in semen than healthy volunteers and subjects with proven fertility (control groups). A lower proportion of low SDF levels (0-15% SDF) and higher incidence of high SDF levels (>30% SDF), as well as a higher prevalence of high ORP values (>1.37 mV/106 sperm/mL), were found in the study groups vs. the control groups. Moreover, infertile men had significantly lower odds ratios (ORs) for low SDF levels and significantly higher ORs for high SDF levels and high ORP. SDF and ORP were negatively correlated with sperm number, morphology, motility and vitality. Furthermore, a significant positive correlation was found between SDF and ORP. The obtained results suggest that disorders of spermatogenesis may occur in varicocele-related infertility. These abnormalities are manifested not only by reduced standard semen parameters but also by decreased sperm DNA integrity and simultaneously increased oxidative stress in semen.


Subject(s)
Infertility, Male , Varicocele , DNA/metabolism , Humans , Infertility, Male/genetics , Male , Oxidation-Reduction , Semen , Semen Analysis , Sperm Count , Sperm Motility , Spermatozoa/metabolism , Varicocele/metabolism
7.
Folia Histochem Cytobiol ; 57(1): 15-22, 2019.
Article in English | MEDLINE | ID: mdl-30869154

ABSTRACT

INTRODUCTION: Contemporary professional jobs that often enforce a sedentary lifestyle and are frequently associated with testicular overheat, deserve special attention with respect to male fertility potential. Interestingly, the harmful effect of testicular heat stress on sperm characteristics including nuclear DNA integrity was well characterized; however, the influence of sedentary work on sperm chromatin has not yet been documented. Therefore, our research was designed to examine the potential effects of sedentary work not only on conventional semen features but also on sperm nuclear DNA status. MATERIALS AND METHODS: The study was carried out on ejaculated sperm cells obtained from men who spent ≥ 50% of their time at work (≥ 17.5 h per week) in a sedentary position (n = 152) and from men who spent < 50% of their time at work in a sedentary position (n = 102). Standard semen characteristics were assessed according to the WHO 2010 recommendations, while sperm nuclear DNA fragmentation (SDF) was evaluated using the Halosperm test. RESULTS: There were no significant differences in the standard semen parameters between the study groups. The groups differed only in SDF parameter. The men who spent at least 50% of their work time in a sedentary position had a higher proportion of SDF than the men who spent < 50% of their time at work in a sedentary position (median value 21.00% vs. 16.50%, respectively). The incidence of low SDF levels (related to 0-15% sperm cells with abnormal DNA dispersion) was significantly lower (27.63% vs. 45.10%), the percentage of men with high SDF levels (related to > 30%) was significantly higher (30.92% vs. 16.67%) in group of men who spent at least 50% of their work time in a sedentary positon. Furthermore, these men were more than twice as likely to have not a low SDF level (OR: 0.4648) and had more than twice the risk of having a high SDF level (OR: 2.2381) than the men in less sedentary occupations. CONCLUSIONS: Despite lack of association between sedentary work and conventional semen characteristics our study revealed detrimental effect of seated work on sperm nuclear DNA integrity. A sedentary job doubled the risk of high levels of sperm DNA damage. The pathomechanism could be related to testicular heat stress resulting in sperm chromatin remodelling failure during spermiogenesis. Therefore, it seems reasonable to simultaneously carry out routine seminological analyses and tests assessing sperm chromatin status while diagnosing male infertility.


Subject(s)
DNA Fragmentation , DNA/genetics , Sedentary Behavior , Spermatozoa/abnormalities , Work , Adult , Chromatin/genetics , Health Risk Behaviors , Humans , Male , Middle Aged , Semen Analysis , Sitting Position , Sperm Count , Sperm Motility , Time Factors , Young Adult
8.
Article in English | MEDLINE | ID: mdl-31195656

ABSTRACT

Because the assessment of sperm DNA fragmentation (SDF) plays a key role in male fertility, our study was designed to find the relationships between SDF and standard semen parameters. The receiver operating characteristic (ROC) curve showed that 18% SDF is a prognostic parameter for discriminating between men with normal and abnormal standard semen parameters (n = 667). Men with > 18% SDF had significantly lower quality semen, a higher prevalence of abnormal semen characteristics, and a higher odds ratio for abnormal semen parameters compared to men with ≤ 18% SDF. An ROC analysis provided predictive values for age and semen parameters to distinguish between men with SDF > 18% and men with ≤ 18% SDF. SDF was positively correlated with male age and teratozoospermia index but negatively with sperm concentration, total number of spermatozoa, sperm morphology, progressive motility, and vitality. Our study shows that 18% SDF has a predictive value for distinguishing between men with normal and abnormal semen characteristics. Men with >18% SDF have a higher risk for abnormal semen parameters, while age and obtained semen parameters have a predictive value for SDF. There is a relationship between SDF and conventional sperm characteristics, and thus, SDF can be incorporated into male fertility assessment.


Subject(s)
DNA Fragmentation , Fertility , Semen/physiology , Spermatozoa/physiology , Adult , Humans , Male , Middle Aged , ROC Curve , Semen Analysis , Young Adult
9.
Cent European J Urol ; 65(1): 38-9, 2012.
Article in English | MEDLINE | ID: mdl-24578923

ABSTRACT

Etiologic factors affecting bladder tumor have been well confirmed and it is widely recognized that carcinogenic substances in urine may play an important role in a pathogenesis. Carcinoma developing in a defunctionalized bladder, although uncommon, does occur. We report a case of a transitional cell carcinoma (TCC) found in a remaining bladder of a male patient and a review of the most relevant literature.

SELECTION OF CITATIONS
SEARCH DETAIL