Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Publication year range
1.
Cell ; 187(16): 4318-4335.e20, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38964327

ABSTRACT

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Dexamethasone , Monocytes , SARS-CoV-2 , Single-Cell Analysis , Humans , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Monocytes/metabolism , Monocytes/drug effects , SARS-CoV-2/drug effects , Male , Female , Transcriptome , Middle Aged , Aged , Glucocorticoids/therapeutic use , Glucocorticoids/pharmacology , Lung/pathology , Adult
2.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34914922

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
3.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: mdl-37188942

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
4.
Cell ; 183(4): 1058-1069.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33058755

ABSTRACT

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/metabolism , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Crystallography, X-Ray , Disease Models, Animal , Humans , Kinetics , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
5.
Immunity ; 55(12): 2436-2453.e5, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36462503

ABSTRACT

The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.


Subject(s)
COVID-19 , Sepsis , Animals , Mice , Actins , Chromatin , Deoxyribonuclease I , DNA , Neutrophils , Proteomics
6.
Nat Immunol ; 19(4): 386-396, 2018 04.
Article in English | MEDLINE | ID: mdl-29556002

ABSTRACT

Live attenuated vaccines are generally highly efficacious and often superior to inactivated vaccines, yet the underlying mechanisms of this remain largely unclear. Here we identify recognition of microbial viability as a potent stimulus for follicular helper T cell (TFH cell) differentiation and vaccine responses. Antigen-presenting cells (APCs) distinguished viable bacteria from dead bacteria through Toll-like receptor 8 (TLR8)-dependent detection of bacterial RNA. In contrast to dead bacteria and other TLR ligands, live bacteria, bacterial RNA and synthetic TLR8 agonists induced a specific cytokine profile in human and porcine APCs, thereby promoting TFH cell differentiation. In domestic pigs, immunization with a live bacterial vaccine induced robust TFH cell and antibody responses, but immunization with its heat-killed counterpart did not. Finally, a hypermorphic TLR8 polymorphism was associated with protective immunity elicited by vaccination with bacillus Calmette-Guérin (BCG) in a human cohort. We have thus identified TLR8 as an important driver of TFH cell differentiation and a promising target for TFH cell-skewing vaccine adjuvants.


Subject(s)
Lymphocyte Activation/immunology , Microbial Viability/immunology , T-Lymphocytes, Helper-Inducer/immunology , Toll-Like Receptor 8/immunology , Vaccines, Attenuated/immunology , Adult , Animals , Antibody Formation/immunology , Cell Differentiation/immunology , Female , Humans , Male , Swine
7.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592166

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
8.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: mdl-34695836

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Atlases as Topic , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Influenza, Human/immunology , Killer Cells, Natural/pathology , RNA-Seq , Single-Cell Analysis , Time Factors , Transforming Growth Factor beta/blood , Viral Load/immunology , Virus Replication/immunology
9.
Nature ; 587(7833): 270-274, 2020 11.
Article in English | MEDLINE | ID: mdl-32726801

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , COVID-19 , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Female , Healthy Volunteers , Humans , Lymphocyte Activation , Male , Middle Aged , Pandemics , SARS-CoV-2
10.
Eur J Neurosci ; 60(2): 3995-4003, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733283

ABSTRACT

Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.


Subject(s)
Adrenal Hyperplasia, Congenital , Androgens , Cerebral Cortex , Sex Characteristics , Humans , Female , Male , Androgens/pharmacology , Adult , Cerebral Cortex/growth & development , Cerebral Cortex/diagnostic imaging , Adrenal Hyperplasia, Congenital/pathology , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Young Adult , Magnetic Resonance Imaging , Adolescent
11.
Eur J Immunol ; 53(10): e2350408, 2023 10.
Article in English | MEDLINE | ID: mdl-37435628

ABSTRACT

The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Rabbits , Antibodies, Neutralizing , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral
12.
Eur J Immunol ; 53(5): e2250210, 2023 05.
Article in English | MEDLINE | ID: mdl-36856018

ABSTRACT

Diverse autoantibodies were suggested to contribute to severe outcomes of COVID-19, but their functional implications are largely unclear. ACE2, the SARS-CoV-2 receptor and a key regulator of blood pressure, was described to be one of many targets of autoantibodies in COVID-19. ACE2 in its soluble form (sACE2) is highly elevated in the blood of critically ill patients, raising the question of whether sACE2:spike complexes induce ACE2 reactivity. Screening 247 COVID-19 patients, we observed elevated sACE2 and anti-ACE2 IgG that were poorly correlated. Interestingly, levels of IgGs recognizing ACE2, IFNα2, and CD26 strongly correlated in severe COVID-19, with 15% of sera showing polyreactivity versus 4.1% exhibiting target-directed autoimmunity. Promiscuous autoantibodies failed to impair the activity of ACE2 and IFNα2, while only specific anti-IFNα2 IgG compromised cytokine function. Our study suggests that the detection of autoantibodies in COVID-19 is often attributed to a promiscuous reactivity, potentially misinterpreted as target-specific autoimmunity with functional impact.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Autoantibodies , Peptidyl-Dipeptidase A , Immunoglobulin G
13.
Am J Gastroenterol ; 119(4): 748-759, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37843039

ABSTRACT

INTRODUCTION: Despite growing awareness of post-coronavirus disease 2019 (COVID-19) cholangiopathy as one of the most serious long-term gastrointestinal consequences of COVID-19, the endoscopic features of this disease are still poorly characterized. This study aimed to more precisely define its endoscopic features and to outline the role of endoscopic retrograde cholangiopancreatography (ERCP) in the management of this entity. METHODS: In this observational study, 46 patients with confirmed post-COVID-19 cholangiopathy were included. RESULTS: Based on the endoscopic features observed in 141 ERCP procedures, post-COVID-19 cholangiopathy can be classified as a variant of secondary sclerosing cholangitis in critically ill patients. It appeared early in the course of intensive care treatment of patients with COVID-19 (cholestasis onset 4.5 days after intubation, median). This form of cholangiopathy was more destructive than stricturing in nature and caused irreversible damage to the bile ducts. A centripetal pattern of intrahepatic bile duct destruction, the phenomenon of vanishing bile ducts, the absence of extrahepatic involvement, and the presence of intraductal biliary casts (85% of patients) were typical cholangiographic features of post-COVID-19 cholangiopathy. This cholangiopathy was often complicated by small peribiliary liver abscesses with isolation of Enterococcus faecium and Candida spp. in bile culture. The prognosis was dismal, with a 1-year liver transplantation-free survival rate of 44%. In particular, patients with peribiliary liver abscesses or destruction of the central bile ducts tended to have a poor prognosis (n.s.). As shown by multivariate analysis, bilirubin levels (on intensive care unit day 25-36) negatively correlated with liver transplantation-free survival (hazard ratio 1.08, P < 0.001). Interventional endoscopy with cast removal had a positive effect on cholestasis parameters (gamma-glutamyl transpeptidase, alkaline phosphatase, and bilirubin); approximately 60% of all individual values decreased. DISCUSSION: Gastrointestinal endoscopy makes an important contribution to the management of post-COVID-19 cholangiopathy. ERCP is not only of great diagnostic and prognostic value but also has therapeutic value and therefore remains indispensable.


Subject(s)
COVID-19 , Cholestasis , Liver Abscess , Liver Diseases , Humans , Cholangiopancreatography, Endoscopic Retrograde , Bilirubin
14.
Infection ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300000

ABSTRACT

PURPOSE: Infective endocarditis caused by non-HACEK gram-negative bacilli (GNB-IE) is rare but associated with significant morbidity and case fatality. Evidence on optimal treatment and management is limited. We aimed to describe the characteristics and management of GNB-IE patients, investigating factors associated with disease acquisition and unfavorable outcomes. METHODS: We conducted a retrospective descriptive single-center study (tertiary care and referral hospital) between 2015 and 2021, including adult patients with definite GNB-IE. We reviewed demographic, clinical and microbiological data, focusing on predisposing factors, clinical outcomes and 1-year mortality. RESULTS: Of 1093 patients with probable or definite IE, 19 patients (median age 69 years) had definite GNB-IE, with an increasing incidence throughout the study period. Median age-adjusted Charlson Comorbidity Index score was 4 points. Prosthetic valve IE (PVIE) was present in 7/19 (37%) patients. Nosocomial acquisition occurred in 8/19 (42%) patients. Escherichia coli and Klebsiella pneumoniae were the most common pathogens. Beta-lactam (BL) based combination therapy was applied in 12/19 (63%) patients (58% BL + fluoroquinolone, 42% BL + aminoglycoside). Cardiac surgery was required in 8/19 (42%) patients (PVIE 71%, native valve IE 25%), primarily for embolism prevention and heart failure. Complications occurred in 14/19 (74%) patients. The in-hospital mortality rate was 21% (4/19); the one-year mortality rate was 44% (7/16). One-year mortality did not significantly differ between patients who underwent cardiac surgery and patients managed with anti-infective treatment alone (p = 0.633). CONCLUSIONS: GNB-IE affects elderly patients with high comorbidity levels and recent health-care exposure. GNB-IE was associated with high complication rates and high mortality.

15.
BMC Infect Dis ; 24(1): 317, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491447

ABSTRACT

BACKGROUND: Cases of mpox have been reported worldwide since May 2022. Limited knowledge exists regarding the long-term course of this disease. To assess sequelae in terms of scarring and quality of life (QoL) in mpox patients 4-6 months after initial infection. METHODS: Prospective observational study on clinical characteristics and symptoms of patients with polymerase chain reaction (PCR)-confirmed mpox, including both outpatients and inpatients. Follow-up visits were conducted at 4-6 months, assessing the Patient and Observer Scar Assessment Scale (POSAS), the Dermatology Life Quality Index (DLQI) and sexual impairment, using a numeric rating scale (NRS) from 0 to 10. RESULTS: Forty-three patients, age range 19-64 years, 41 men (all identifying as MSM) and 2 women, were included. Upon diagnosis, skin or mucosal lesions were present in 93.0% of cases, with 73.3% reporting pain (median intensity: 8, Q1-Q3: 6-10). Anal involvement resulted in a significantly higher frequency of pain than genital lesions (RR: 3.60, 95%-CI: 1.48-8.74). Inpatient treatment due to pain, superinfection, abscess or other indications was required in 20 patients (46.5%). After 4-6 months, most patients did not have significant limitations, scars or pain. However, compared to patients without such complications, patients with superinfection or abscess during the acute phase had significantly more extensive scar formation (median PSAS: 24.0 vs. 11.0, p = 0.039) and experienced a significantly greater impairment of their QoL (median DLQI: 2.0 vs. 0.0, p = 0.036) and sexuality (median NRS: 5.0 vs. 0.0, p = 0.017). CONCLUSION: We observed a wide range of clinical mpox manifestations, with some patients experiencing significant pain and requiring hospitalization. After 4-6 months, most patients recovered without significant sequelae, but those with abscesses or superinfections during the initial infection experienced a significant reduction in QoL and sexuality. Adequate treatment, including antiseptic and antibiotic therapy during the acute phase, may help prevent such complications, and hence, improve long-term outcomes.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Superinfection , Male , Humans , Female , Young Adult , Adult , Middle Aged , Abscess , Cohort Studies , Quality of Life , Cicatrix , Follow-Up Studies , Homosexuality, Male , Pain/etiology
16.
Gesundheitswesen ; 86(10): 647-654, 2024 Oct.
Article in German | MEDLINE | ID: mdl-39173676

ABSTRACT

In the early phase of the COVID-19 pandemic, many local collections of clinical data on patients infected with SARS-CoV-2 were initiated in Germany. As part of the National Pandemic Cohort Network (NAPKON) of the University Medicine Network, the "Integration Core" was established to design the legal, technical and organisational requirements for the integration of inventory data into ongoing prospective data collections and to test the feasibility of the newly developed solutions using use cases (UCs). Detailed study documents of the data collections were obtained. After structured document analysis, a review board evaluated the integrability of the data in NAPKON according to defined criteria. Of 30 university hospitals contacted, 20 responded to the request. Patient information and consent showed a heterogeneous picture with regard to the pseudonymised transfer of data to third parties and re-contact. The majority of the data collections (n=13) met the criteria for integration into NAPKON; four studies would require adjustments to the regulatory documents. Three cohorts were not suitable for inclusion in NAPKON. The legal framework for retrospective data integration and consent-free data use via research clauses (§27 BDSG) was elaborated by a legal opinion by TMF - Technology, Methods and Infrastructure for Networked Medical Research, Berlin. Two UCs selected by the NAPKON steering committee (CORKUM, LMU Munich; Pa-COVID-19, Charité- Universitätsmedizin Berlin) were used to demonstrate the feasibility of data integration in NAPKON by the end of 2021. Quality assurance and performance-based reimbursement of the cases were carried out according to the specifications. Based on the results, recommendations can be formulated for various contexts in order to create technical-operational prerequisites such as interoperability, interfaces and data models for data integration and to fulfil regulatory requirements on ethics, data protection, medical confidentiality and data access when integrating existing cohort data. The possible integration of data into research networks and their secondary use should be taken into account as early as the planning phase of a study - particularly with regard to informed consent - in order to maximise the benefits of the data collected.


Subject(s)
COVID-19 , Pandemics , Registries , Germany , COVID-19/epidemiology , Humans , Cohort Studies , SARS-CoV-2 , Data Collection
17.
J Neuroinflammation ; 20(1): 30, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759861

ABSTRACT

Patients with COVID-19 can have a variety of neurological symptoms, but the active involvement of central nervous system (CNS) in COVID-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. We studied the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n = 38). Patients with herpes simplex virus encephalitis (HSVE, n = 10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n = 28) served as controls. We used proteomics, enzyme-linked immunoassays, and semiquantitative cytokine arrays to characterize inflammatory proteins. Autoantibody screening was performed with cell-based assays and native tissue staining. RNA sequencing of long-non-coding RNA and circular RNA was done to study the transcriptome. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients with, e.g., downregulation of the apolipoproteins and extracellular matrix proteins. Protein upregulation of the complement system, the serpin proteins pathways, and other proteins including glycoproteins alpha-2 and alpha-1 acid. Importantly, calculation of interleukin-6, interleukin-16, and CXCL10 CSF/serum indices suggest that these inflammatory mediators reach the CSF from the systemic circulation, rather than being produced within the CNS. Antibody screening revealed no pathological levels of known neuronal autoantibodies. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly (p < 0.01) higher in those with bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, and two circRNAs being significantly differentially expressed in COVID-19 than in non-neuroinflammatory controls and neurodegenerative patients. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological COVID-19 and post-COVID-19 symptoms deserves further investigation.


Subject(s)
COVID-19 , Encephalitis, Herpes Simplex , Superinfection , Humans , Proteome/metabolism , RNA, Viral/metabolism , Superinfection/metabolism , SARS-CoV-2 , Brain/metabolism , Inflammation/metabolism , Encephalitis, Herpes Simplex/cerebrospinal fluid , Inflammation Mediators/metabolism
18.
PLoS Pathog ; 17(2): e1009259, 2021 02.
Article in English | MEDLINE | ID: mdl-33600495

ABSTRACT

The human malaria parasite Plasmodium falciparum relies on lipids to survive; this makes its lipid metabolism an attractive drug target. The lipid phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell membrane (RBC) bilayer; however, some studies suggest that infection with the intracellular parasite results in the presence of this lipid in the RBC membrane outer leaflet, where it could act as a recognition signal to phagocytes. Here, we used fluorescent lipid analogues and probes to investigate the enzymatic reactions responsible for maintaining asymmetry between membrane leaflets, and found that in parasitised RBCs the maintenance of membrane asymmetry was partly disrupted, and PS was increased in the outer leaflet. We examined the underlying causes for the differences between uninfected and infected RBCs using fluorescent dyes and probes, and found that calcium levels increased in the infected RBC cytoplasm, whereas membrane cholesterol was depleted from the erythrocyte plasma membrane. We explored the resulting effect of PS exposure on enhanced phagocytosis by monocytes, and show that infected RBCs must expend energy to limit phagocyte recognition, and provide experimental evidence that PS exposure contributes to phagocytic recognition of P. falciparum-infected RBCs. Together, these findings underscore the pivotal role for PS exposure on the surface of Plasmodium falciparum-infected erythrocytes for in vivo interactions with the host immune system, and provide a rationale for targeted antimalarial drug design.


Subject(s)
Calcium/metabolism , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Monocytes/metabolism , Phagocytosis , Phosphatidylserines/metabolism , Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Monocytes/parasitology , Plasmodium falciparum/isolation & purification
19.
Infection ; 51(2): 483-487, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35960457

ABSTRACT

Berlin is amongst the cities most affected by the current monkeypox outbreak. Here, we report clinical characteristics of the first patients with confirmed monkeypox admitted to our center. We analyzed anamnestic, clinical, and laboratory data. Within a period of 2 weeks, six patients were hospitalized in our unit. All were MSM and had practiced condomless receptive anal intercourse in the weeks preceding admission. The chief complaint in all patients but one was severe anal pain unprecedented in severity. Investigations revealed proctitis, as well as anal and rectal ulcers with detection of monkeypox virus. Our findings support the hypothesis that sexual transmission plays a role in the current outbreak.


Subject(s)
HIV Infections , Mpox (monkeypox) , Male , Humans , Homosexuality, Male , HIV Infections/epidemiology , Sexual Behavior , Pain
20.
Neuroimage ; 263: 119646, 2022 11.
Article in English | MEDLINE | ID: mdl-36155243

ABSTRACT

Pregnancy and giving birth are exceptional states in a woman's life for many reasons. While the effects of pregnancy and childbirth on the female body are obvious, less is known about their impact on the female brain, especially in humans. The scientific literature is still sparse but we have identified 12 longitudinal neuroimaging studies conducted in women whose brains were scanned before pregnancy, during pregnancy, and/or after giving birth. This review summarizes and discusses the reported neuroanatomical changes during pregnancy, postpartum, and beyond. Some studies suggest that pregnancy is mainly associated with tissue decreases, and a few studies suggest that this tissue loss is mostly permanent. In contrast, the majority of studies seems to indicate that the postpartum period is accompanied by substantial tissue increases throughout the entire brain. Future research is clearly warranted to replicate and extend the current findings, while addressing various limitations and shortcomings of existing studies.


Subject(s)
Neuroanatomy , Postpartum Period , Pregnancy , Female , Humans , Brain/diagnostic imaging , Longitudinal Studies
SELECTION OF CITATIONS
SEARCH DETAIL