Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Opt Express ; 30(11): 18530-18538, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221652

ABSTRACT

We demonstrate a point-to-point clock synchronization protocol based on bidirectionally propagating photons generated in a single spontaneous parametric down-conversion (SPDC) source. Tight timing correlations between photon pairs are used to determine the single and round-trip times measured by two separate clocks, providing sufficient information for distance-independent absolute synchronization secure against symmetric delay attacks. We show that the coincidence signature useful for determining the round-trip time of a synchronization channel, established using a 10 km telecommunications fiber, can be derived from photons reflected off the end face of the fiber without additional optics. Our technique allows the synchronization of multiple clocks with a single reference clock co-located with the source, without requiring additional pair sources, in a client-server configuration suitable for synchronizing a network of clocks.

2.
Opt Express ; 29(3): 3415-3424, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770940

ABSTRACT

The temporal response of single-photon detectors is usually obtained by measuring their impulse response to short-pulsed laser sources. In this work, we present an alternative approach using time-correlated photon pairs generated in spontaneous parametric down-conversion (SPDC). By measuring the cross-correlation between the detection times recorded with an unknown and a reference photodetector, the temporal response function of the unknown detector can be extracted. Changing the critical phase-matching conditions of the SPDC process provides a wavelength-tunable source of photon pairs. We demonstrate a continuous wavelength-tunability from 526 nm to 661 nm for one photon of the pair, and 1050 nm to 1760 nm for the other photon. The source allows, in principle, to access an even wider wavelength range by simply changing the pump laser of the SPDC-based source. As an initial demonstration, we characterize single-photon avalance detectors sensitive to the two distinct wavelength bands, one based on Silicon, the other based on Indium Gallium Arsenide.

3.
Opt Express ; 29(6): 8130-8141, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820265

ABSTRACT

Optical cavities in the near-concentric regime have near-degenerate transverse modes; the tight focusing transverse modes in this regime enable strong coupling with atoms. These features provide an interesting platform to explore multi-mode interaction between atoms and light. Here, we use a spatial light modulator (SLM) to shape the phase of an incoming light beam to match several Laguerre-Gaussian (LG) modes of a near-concentric optical cavity. We demonstrate coupling efficiency close to the theoretical prediction for single LG modes and well-defined combinations of them, limited mainly by imperfections in the cavity alignment.

4.
Opt Express ; 29(23): 37075-37080, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808786

ABSTRACT

Quantum key distribution (QKD) using polarisation encoding can be hard to implement over deployed telecom fibres because the routing geometry and the birefringence of the fibre link can alter the polarisation states of the propagating photons. These alterations cause a basis mismatch, leading to an increased quantum bit error rate (QBER). In this work we demonstrate a technique for a dynamically compensating fibre-induced state alteration in a QKD system. This compensation scheme includes a feedback loop that minimizes the QBER using a stochastic optimization algorithm. The effectiveness of this technique is implemented and verified in a polarisation entanglement QKD system over a deployed telecom fibre.

5.
Phys Rev Lett ; 125(18): 183603, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196265

ABSTRACT

We experimentally demonstrate a spectral compression scheme for heralded single photons with narrow spectral bandwidth around 795 nm, generated through four-wave mixing in a cloud of cold ^{87}Rb atoms. The scheme is based on an asymmetric cavity as a dispersion medium and a simple binary phase modulator, and can be, in principle, without any optical losses. We observe a compression from 20.6 MHz to less than 8 MHz, almost matching the corresponding atomic transition.

6.
Phys Rev Lett ; 121(15): 150402, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362792

ABSTRACT

We present a violation of the Clauser-Horne-Shimony-Holt inequality without the fair sampling assumption with a continuously pumped photon pair source combined with two high efficiency superconducting detectors. Because of the continuous nature of the source, the choice of the duration of each measurement round effectively controls the average number of photon pairs participating in the Bell test. We observe a maximum violation of S=2.016 02(32) with an average number of pairs per round of ≈0.32, compatible with our system overall detection efficiencies. Systems that violate a Bell inequality are guaranteed to generate private randomness, with the randomness extraction rate depending on the observed violation and on the repetition rate of the Bell test. For our realization, the optimal rate of randomness generation is a compromise between the observed violation and the duration of each measurement round, with the latter realistically limited by the detection time jitter. Using an extractor composably secure against quantum adversary with quantum side information, we calculate an asymptotic rate of ≈1300 random bits/s. With an experimental run of 43 min, we generated 617 920 random bits, corresponding to ≈240 random bits/s.

7.
Opt Express ; 25(6): 6294-6301, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28380982

ABSTRACT

We investigate the scattering of single photons by single atoms and, in particular, the dependence of the atomic dynamics and the scattering probability on the photon bandwidth. We tightly focus the incident photons onto a single trapped 87Rb atom and use the time-resolved transmission to characterize the interaction strength. Decreasing the bandwidth of the single photons from 6 to 2 times the atomic linewidth, we observe an increase in atomic peak excitation and photon scattering probability.

8.
Opt Express ; 25(24): 30388-30394, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29221068

ABSTRACT

Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.

9.
Phys Rev Lett ; 115(18): 180408, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565447

ABSTRACT

We present an experimental test of the Clauser-Horne-Shimony-Holt Bell inequality on photon pairs in a maximally entangled state of polarization in which a value S=2.82759±0.00051 is observed. This value comes close to the Tsirelson bound of |S|≤2sqrt[2], with S-2sqrt[2]=0.00084±0.00051. It also violates the bound |S|≤2.82537 introduced by Grinbaum by 4.3 standard deviations. This violation allows us to exclude that quantum mechanics is only an effective description of a more fundamental theory.

10.
Phys Rev Lett ; 113(16): 163601, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361256

ABSTRACT

We demonstrate a way to prepare single photons with a temporal envelope that resembles the time reversal of photons from the spontaneous decay process. We use the photon pairs generated from a time-ordered cascade decay: the detection of the first photon of the cascade is used as a herald for the ground-state transition resonant second photon. We show how the interaction of the heralding photon with an asymmetric Fabry-Perot cavity reverses the temporal shape of its twin photon from a decaying to a rising exponential envelope. This single photon is expected to be ideal for interacting with two-level systems.

11.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602458

ABSTRACT

Near-concentric cavities are excellent tools for enhancing an atom-light interaction as they combine a small mode volume with a large optical access for atom manipulation. However, they are sensitive to longitudinal and transverse misalignments. To address this sensitivity, we present a compact near-concentric optical cavity system with a residual cavity length variation δLC,rms = 0.36(2) Å. A key part of this system is a cage-like tensegrity mirror support structure that allows us to correct for longitudinal and transverse misalignments. The system is stable enough to allow the use of mirrors with a higher cavity finesse to enhance the atom-light coupling strength in cavity-QED applications.

12.
Phys Rev Lett ; 111(12): 123602, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093260

ABSTRACT

We observe narrow band pairs of time-correlated photons of wavelengths 776 and 795 nm from nondegenerate four-wave mixing in a laser-cooled atomic ensemble of ^{87}Rb using a cascade decay scheme. Coupling the photon pairs into single mode fibers, we observe an instantaneous rate of 7700 pairs per second with silicon avalanche photodetectors, and an optical bandwidth below 30 MHz. Detection events exhibit a strong correlation in time [g((2))(τ = 0) ≈ 5800] and a high coupling efficiency indicated by a pair-to-single ratio of 23%. The violation of the Cauchy-Schwarz inequality by a factor of 8.4 × 10(6) indicates a strong nonclassical correlation between the generated fields, while a Hanbury Brown-Twiss experiment in the individual photons reveals their thermal nature. The comparison between the measured frequency bandwidth and 1/e decay time of g((2)) indicates a transform-limited spectrum of the photon pairs. The narrow bandwidth and brightness of our source makes it ideal for interacting with atomic ensembles in quantum communication protocols.

13.
Phys Rev Lett ; 111(10): 103001, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-25166660

ABSTRACT

We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance with a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers and are able to saturate the optical transition of a single atom with ≈50 photons in a pulse by a strong focusing technique.

14.
Phys Rev Lett ; 107(17): 170404, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-22107491

ABSTRACT

Entanglement witnesses such as Bell inequalities are frequently used to prove the nonclassicality of a light source and its suitability for further tasks. By demonstrating Bell inequality violations using classical light in common experimental arrangements, we highlight why strict locality and efficiency conditions are not optional, particularly in security-related scenarios.

15.
Sensors (Basel) ; 11(1): 905-16, 2011.
Article in English | MEDLINE | ID: mdl-22346610

ABSTRACT

Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes.

16.
Opt Express ; 18(12): 13029-37, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588431

ABSTRACT

We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

17.
Phys Rev Lett ; 103(15): 153601, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905637

ABSTRACT

We report on a direct measurement of a phase shift on a weak coherent beam by a single 87Rb atom in a Mach-Zehnder interferometer. By strongly focusing the probe mode to the location of the atom, a maximum phase shift of about 1 degree is observed experimentally.

18.
Rev Sci Instrum ; 89(12): 123108, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30599561

ABSTRACT

Transition-edge sensors (TESs) are photon-number resolving calorimetric spectrometers with near unit efficiency. Their recovery time, which is on the order of microseconds, limits the number resolving ability and timing accuracy in high photon-flux conditions. This is usually addressed by pulsing the light source or discarding overlapping signals, thereby limiting its applicability. We present an approach to assign detection times to overlapping detection events in the regime of low signal-to-noise ratio, as in the case of TES detection of near-infrared radiation. We use a two-level discriminator, inherently robust against noise, to coarsely locate pulses in time and timestamp individual photoevents by fitting to a heuristic model. As an example, we measure the second-order time correlation of a coherent source in a single spatial mode using a single TES detector.

19.
Opt Express ; 15(15): 9388-93, 2007 Jul 23.
Article in English | MEDLINE | ID: mdl-19547285

ABSTRACT

The security of quantum key distribution relies on the validity of quantum mechanics as a description of nature and on the non-existence of leaky degrees of freedom in the practical implementations. We experimentally demonstrate how, in some implementations, timing information revealed during public discussion between the communicating parties can be used by an eavesdropper to undetectably access a significant portion of the "secret" key.

20.
Nat Commun ; 8(1): 1200, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089501

ABSTRACT

Implementing nonlinear interactions between single photons and single atoms is at the forefront of optical physics. Motivated by the prospects of deterministic all-optical quantum logic, many efforts are currently underway to find suitable experimental techniques. Focusing the incident photons onto the atom with a lens yielded promising results, but is limited by diffraction to moderate interaction strengths. However, techniques to exceed the diffraction limit are known from high-resolution imaging. Here we adapt a super-resolution imaging technique, 4Pi microscopy, to efficiently couple light to a single atom. We observe 36.6(3)% extinction of the incident field, and a modified photon statistics of the transmitted field-indicating nonlinear interaction at the single-photon level. Our results pave the way to few-photon nonlinear optics with individual atoms in free space.

SELECTION OF CITATIONS
SEARCH DETAIL