Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31772017

ABSTRACT

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Subject(s)
Eutheria , Evolution, Molecular , Genome/genetics , Shrews , Venoms/genetics , Animals , Eutheria/classification , Eutheria/genetics , Eutheria/physiology , Gene Duplication , Male , Phylogeny , Proteomics , Shrews/classification , Shrews/genetics , Shrews/physiology , Tissue Kallikreins/genetics
2.
Clin Sci (Lond) ; 134(20): 2755-2769, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33034619

ABSTRACT

Heart failure (HF) is associated with impaired L-arginine transport. In the present study, we tested the hypothesis that augmented L-arginine transport prevents the loss of kidney function in HF. Renal function was assessed in wildtype mice (WT), transgenic mice with HF (dilated cardiomyopathy, DCM) and double transgenic mice (double transgenic mice with DCM and CAT-1 overexpression, HFCAT-1) with HF and endothelial-specific overexpression of the predominant L-arginine transporter, cationic amino acid transporter-1 (CAT-1) (n=4-8/group). Cardiac function was assessed via echocardiography and left ventricular catheterisation. Renal function was assessed via quantification of albuminuria and creatinine clearance. Plasma nitrate and nitrite levels together with renal fibrosis and inflammatory markers were also quantified at study end. Albumin/creatinine ratio was two-fold greater in DCM mice than in WT mice (P=0.002), and tubulointerstitial and glomerular fibrosis were approximately eight- and three-fold greater, respectively, in DCM mice than in WT mice (P≤0.02). Critically, urinary albumin/creatinine ratio and tubulointerstitial and glomerular fibrosis were less in HFCAT-1 mice than in DCM mice (P<0.05). Renal CAT-1 expression and plasma nitrate and nitrite levels were less in DCM mice compared with WT (P≤0.03) but was greater in HFCAT-1 mice than in DCM mice (P≤0.009). Renal expression of IL-10 was less in DCM mice compared with WT (P<0.001) but was greater in HFCAT-1 mice compared with DCM mice (P=0.02). Our data provide direct evidence that augmented L-arginine transport prevents renal fibrosis, inflammation and loss of kidney function in HF.


Subject(s)
Cationic Amino Acid Transporter 1/metabolism , Endothelial Cells/metabolism , Heart Failure/physiopathology , Kidney Function Tests , Kidney/physiopathology , Animals , Blood Pressure , Body Weight , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cationic Amino Acid Transporter 1/genetics , Fibrosis , Gene Expression Regulation , Heart Failure/blood , Heart Failure/genetics , Inflammation/genetics , Inflammation/pathology , Kidney/immunology , Kidney/pathology , Male , Mice, Transgenic , Myocardium/pathology , Nitrates/blood , Nitrites/blood , Organ Size , Organ Specificity , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Clin Sci (Lond) ; 133(20): 2061-2067, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31654065

ABSTRACT

The precise mechanisms underlying resistant hypertension remain elusive. Reduced nitric oxide (NO) bioavailability is frequently documented in chronic kidney disease, obesity, diabetes and advanced age, all of which are risk factors for resistant hypertension. Sympathetic overactivity and chronic activation of the renin-angiotensin system are salient features of resistant hypertension. Interestingly, recent data indicate that renal sympathetic overactivity can reduce the expression of neuronal nitric oxide synthase in the paraventricular nucleus. Reduced NO levels in the paraventricular nucleus can increase sympathetic outflow and this can create a vicious cycle contributing to resistant hypertension. Angiotensin II can reduce l-arginine transport and hence NO production. Reduced NO levels may reduce the formation of angiotensin 1-7 dampening the cardio-protective effects of the renin-angiotensin system contributing to resistant hypertension. In addition, interleukin-6 (IL-6) is demonstrated to be independently associated with resistant hypertension, and IL-6 can reduce NO synthesis. Despite this, NO levels have not been quantified in resistant hypertension. Findings from a small proof of concept study indicate that NO donors can reduce blood pressure in patients with resistant hypertension but more studies are required to validate these preliminary findings. In the present paper, we put forward the hypothesis that reduced NO bioavailability contributes substantially to the development of resistant hypertension.


Subject(s)
Arginine/physiology , Hypertension/physiopathology , Nitric Oxide/physiology , Biological Availability , Endothelium, Vascular/physiopathology , Humans , Hypertension/etiology , Hypertension/therapy , Inflammation/complications , Nitric Oxide/deficiency , Nitric Oxide/pharmacokinetics , Renin-Angiotensin System/physiology , Signal Transduction/physiology , Sympathetic Nervous System/physiopathology , Treatment Failure , Vascular Stiffness/physiology
4.
Neurochem Res ; 44(6): 1289-1296, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30806879

ABSTRACT

The accumulation of amyloid beta (Aß) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aß exists and the importance of enzymes involved in the production and breakdown of Aß in maintaining healthy Aß levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aß-producing enzymes, ß-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aß-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aß degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aß build-up. Therefore Aß degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aß synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aß-degrading enzymes, and the untapped therapeutic potential of enzyme activation.


Subject(s)
Amyloid beta-Peptides/metabolism , Endothelin-Converting Enzymes/metabolism , Enzyme Activators/pharmacology , Insulysin/metabolism , Neprilysin/metabolism , Proteolysis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Amyloid beta-Peptides/chemistry , Animals , Genetic Therapy , Humans
5.
Circulation ; 135(10): 964-977, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-27927713

ABSTRACT

BACKGROUND: Dietary intake of fruit and vegetables is associated with lower incidence of hypertension, but the mechanisms involved have not been elucidated. Here, we evaluated the effect of a high-fiber diet and supplementation with the short-chain fatty acid acetate on the gut microbiota and the prevention of cardiovascular disease. METHODS: Gut microbiome, cardiorenal structure/function, and blood pressure were examined in sham and mineralocorticoid excess-treated mice with a control diet, high-fiber diet, or acetate supplementation. We also determined the renal and cardiac transcriptome of mice treated with the different diets. RESULTS: We found that high consumption of fiber modified the gut microbiota populations and increased the abundance of acetate-producing bacteria independently of mineralocorticoid excess. Both fiber and acetate decreased gut dysbiosis, measured by the ratio of Firmicutes to Bacteroidetes, and increased the prevalence of Bacteroides acidifaciens. Compared with mineralocorticoid-excess mice fed a control diet, both high-fiber diet and acetate supplementation significantly reduced systolic and diastolic blood pressures, cardiac fibrosis, and left ventricular hypertrophy. Acetate had similar effects and markedly reduced renal fibrosis. Transcriptome analyses showed that the protective effects of high fiber and acetate were accompanied by the downregulation of cardiac and renal Egr1, a master cardiovascular regulator involved in cardiac hypertrophy, cardiorenal fibrosis, and inflammation. We also observed the upregulation of a network of genes involved in circadian rhythm in both tissues and downregulation of the renin-angiotensin system in the kidney and mitogen-activated protein kinase signaling in the heart. CONCLUSIONS: A diet high in fiber led to changes in the gut microbiota that played a protective role in the development of cardiovascular disease. The favorable effects of fiber may be explained by the generation and distribution of one of the main metabolites of the gut microbiota, the short-chain fatty acid acetate. Acetate effected several molecular changes associated with improved cardiovascular health and function.


Subject(s)
Desoxycorticosterone Acetate/pharmacology , Dietary Fiber/pharmacology , Gastrointestinal Microbiome/drug effects , Hypertension/prevention & control , Animals , Bacteria/genetics , Bacteria/isolation & purification , Blood Pressure/drug effects , Desoxycorticosterone Acetate/therapeutic use , Dietary Fiber/therapeutic use , Dietary Supplements , Disease Models, Animal , Fibrosis , Gastrointestinal Tract/microbiology , Hypertension/pathology , Hypertension/veterinary , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Organ Size/drug effects , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Transcriptome/drug effects
6.
Exp Physiol ; 103(12): 1593-1602, 2018 12.
Article in English | MEDLINE | ID: mdl-30311699

ABSTRACT

NEW FINDINGS: What is the central question of this study? The aim was to determine the renoprotective effects of serelaxin in the setting of chronic heart failure. What are the main findings and its importance? Our data indicate that serelaxin can reduce renal fibrosis and inflammation in experimental heart failure. Currently, there are no effective treatments to rescue renal function in heart failure patients, and our data suggest that serelaxin might have the potential to reduce renal fibrosis and inflammation in heart failure. ABSTRACT: Serelaxin has been demonstrated to attenuate renal fibrosis and inflammation in cardiorenal disease. In the present study, we tested the hypothesis that serelaxin can prevent the decline in renal function in dilated cardiomyopathy (DCM) by targeting renal fibrosis and inflammation. Male transgenic mice with DCM (n = 16) and their wild-type littermates (WT; n = 20) were administered either vehicle or serelaxin (500 µg kg-1  day-1 ; subcutaneous minipumps; 8 weeks). Cardiac function was assessed via echocardiography before and during the eighth week of serelaxin treatment. Renal function and inflammation as well as cardiac and renal fibrosis were assessed at the end of the study. Serelaxin had minimal effect on cardiac function (P ≥ 0.99). Tubulointerstitial and glomerular fibrosis were ∼3-fold greater in vehicle-treated DCM mice compared with vehicle-treated WT mice (P ≤ 0.001). Renal mRNA expression of Tnfα and Il1α were ∼4- and ∼3-fold greater, respectively, in vehicle-treated DCM mice compared with vehicle-treated WT mice (P ≤ 0.05). Tubulointerstitial and glomerular fibrosis were 46 and 45% less, respectively, in serelaxin-treated DCM mice than in vehicle-treated DCM mice (P ≤ 0.01). Renal cortical mRNA expression of Tnfα and Il1α were 56 and 58% less, respectively, in the former group compared with the latter (P ≤ 0.05). The urinary albumin:creatinine ratio was ∼3-fold greater in vehicle-treated DCM mice compared with vehicle-treated WT mice (P = 0.02). The urinary albumin:creatinine ratio was not significantly different between vehicle-treated DCM mice and serelaxin-treated DCM mice (P = 0.38). These data suggest that serelaxin can attenuate renal fibrosis and inflammation and has the potential to exert renoprotective effects in DCM.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cardio-Renal Syndrome/drug therapy , Cardiomyopathy, Dilated/drug therapy , Heart Failure/drug therapy , Kidney/drug effects , Nephritis/prevention & control , Relaxin/pharmacology , Animals , Cardio-Renal Syndrome/pathology , Cardio-Renal Syndrome/physiopathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Collagen/genetics , Collagen/metabolism , Disease Models, Animal , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Male , Mice , Myocardium/metabolism , Myocardium/pathology , Nephritis/genetics , Nephritis/metabolism , Nephritis/physiopathology , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Mol Cell Proteomics ; 13(4): 1091-4, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23816989

ABSTRACT

Endothelin converting Enzyme-1 (ECE-1) is essential for the production of Endothelin-1 (ET-1), which is associated with vasospasm following subarachnoid hemorrhage (SAH). We have previously demonstrated the presence of a catalytically active soluble form of ECE-1 in the media of endothelial cells. We aimed to determine if this form of ECE-1 exists in vivo, in cerebrospinal fluid (CSF) of SAH patients. We examined CSF taken from SAH subjects for the presence of soluble ECE-1 using a bradykinin based quenched fluorescent substrate assay. We obtained further confirmation by characterizing the CSF mediated cleavage products of BigET-1 and BigET18₋34 (6 µg/ml) using mass spectrometry. The specificity of cleavage was confirmed using the ECE-1 inhibitor CGS35066 5 nmol/L. SAH CSF samples had mean ECE-1 activity of 0.127 ± 0.037 µmols of substrate cleaved/µl of CSF/24 h. The C-terminal peptides generated upon the cleavage of BigET-1 and BigET18₋34 were detected 48 h after incubation of these substrates with CSF. Cleavage of these substrates was inhibited by CGS35066. Results of Western blots also produced strong evidence for the presence of truncated soluble ECE-1 in CSF. These results strongly suggest the presence of a truncated but catalytically active form of ECE-1 in the CSF of SAH subjects. Further studies are necessary to determine the biological significance of soluble ECE-1 in CSF of SAH subjects, including an association with vasospasm after SAH.


Subject(s)
Aspartic Acid Endopeptidases/cerebrospinal fluid , Endothelin-1/analysis , Metalloendopeptidases/cerebrospinal fluid , Subarachnoid Hemorrhage/cerebrospinal fluid , Benzofurans/pharmacology , Bradykinin/metabolism , Endothelin-1/metabolism , Endothelin-Converting Enzymes , Enzyme Inhibitors/pharmacology , Humans , Hydrocephalus/cerebrospinal fluid , Mass Spectrometry , Organophosphonates/pharmacology , Subarachnoid Hemorrhage/enzymology , Subarachnoid Hemorrhage/pathology
8.
Biochem Biophys Res Commun ; 446(2): 423-7, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24495806

ABSTRACT

A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 µM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35±0.70 and 6.54±0.41 µmols of substrate cleaved over 3h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC50 values of 5.36 and 4.32 µM, respectively. Treatment of cells with TPI2155-14 (15 µM) and TPI2155-17 (4.3 µM) resulted in a significant decrease in NEP activity in media (62.37±1.43 and 38.30±4.70, respectively as a % of control; P<0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.


Subject(s)
ADAM Proteins/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Neprilysin/biosynthesis , ADAM17 Protein , Catalysis , Cell Line , Humans , Neprilysin/chemistry , Signal Transduction/physiology , Solubility
9.
Mol Cell Biochem ; 396(1-2): 49-54, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25226840

ABSTRACT

This study examined the effect of nitric oxide on the production of soluble ECE-1. Activity of ECE-1 in media was measured using a quenched fluorescent substrate assay, and expressed as a percentage of control. Endothelial cells were incubated with the nitric oxide donor Diethylenetriamine NONOate (DETA; 250-800 µM), NOS substrate L-Arg (200-1,000 µM), a L-Arg transport inhibitor (L-Lys; 10 µM) and NOS inhibitors (L-Gln and N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME); 10-100 µM). The effect of L-Arg (1,000 µM) was also tested in the presence of L-Lys (10 µM), L-Gln (100 µM) and L-NAME (10-100 µM). Ultracentrifugation (100,000×g, 4 °C, 1 h) completely removed ECE-1 activity from the supernatant. In addition, fractionation of concentrated media on a sucrose density gradient indicated that ECE-1 activity was localised to the mid portion of the gradient, thus suggesting the possible role of exosomes in ECE-1 release. Production of soluble ECE-1 by Ea.hy926 cells was inhibited significantly (P < 0.05, unpaired t test, n = 4) in the presence of DETA (75.31 ± 3.59; 800 µM) and L-Arg (60.97 ± 9.22; 1,000 µM). L-Arg-mediated reduction in the release of soluble ECE-1 was blocked by the inhibition of NOS using L-NAME (100 µM; 99.19 ± 0.58) and L-Gln (100 µM; 104.41 ± 0.65). In addition, the presence of L-Lys (10 µM) significantly blocked the L-Arg (1,000 µM)-induced reduction in soluble ECE-1 levels (122.38 ± 13.16). These treatments had no effect on the expression of ECE-1 on the cell surface. Our data provide evidence that NO can inhibit the production of soluble ECE-1 by endothelial cells.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Endothelial Cells/metabolism , Metalloendopeptidases/metabolism , Nitric Oxide/metabolism , Arginine/pharmacology , Aspartic Acid Endopeptidases/chemistry , Cell Line/drug effects , Cell Membrane/metabolism , Endothelial Cells/drug effects , Endothelin-Converting Enzymes , Humans , Lysine/pharmacology , Metalloendopeptidases/chemistry , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , Nitroso Compounds/pharmacology , Solubility , Ultracentrifugation
10.
Pflugers Arch ; 465(7): 929-34, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23328864

ABSTRACT

Endothelin is one of the most potent peptide vasoconstrictors thus far characterised. It is produced by the cleavage of its precursor big endothelin-1 by endothelin-converting enzyme-1 (ECE-1). The endothelin system which includes endothelin-1 (ET-1), ET receptors and ECE-1 is well characterised in the kidney and is known to play a key role in the pathogenesis of end-stage renal disease (ESRD). Therefore, inhibition of ECE-1 and antagonism of ET receptors represent potential therapeutic approaches for the treatment of ESRD. Here, we review the current literature on the localisation of ECE-1 in the normal kidney and how ECE-1 expression is altered in pathological conditions leading to ESRD. We also discuss the roles of neutral endopeptidase (NEP) and chymase in mediating the production of ET-1 in the kidney in ESRD. As such, we also discuss that complete inhibition of ET-1 production in the kidney requires the inhibition of ECE-1, NEP and chymase.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Kidney Failure, Chronic/metabolism , Metalloendopeptidases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/metabolism , Chymases/metabolism , Endothelin-Converting Enzymes , Endothelins/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Kidney Failure, Chronic/drug therapy , Kidney Failure, Chronic/enzymology , Metalloendopeptidases/metabolism , Neprilysin/metabolism
11.
Res Sq ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066342

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.

13.
Biochem Biophys Res Commun ; 427(3): 606-10, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23022525

ABSTRACT

Endothelin Converting Enzyme-1 (ECE-1) is essential for the production of the potent vasoconstrictor Endothelin-1 (ET-1). The activation of Protein Kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) can increase ECE-1 phosphorylation, which in turn promotes ECE-1c trafficking to the cell surface where ET-1 production occurs. This study has identified the specific residues in the N-terminal cytoplasmic tail of ECE-1c isoform that are phosphorylated upon the activation of PKC. Levels of phosphorylation are expressed as a % phosphorylation in untreated CHO-K1 cells. We transfected CHO-K1 cells with wild type and mutant forms of ECE-1c (Ala(4)-ECE-1c, Ala(35)ECE-1c and Ala(4/35)ECE-1c) to confirm the involvement of Thr(4) and Ser(35) residues in PMA induced phosphorylation of ECE-1c. Phosphorylation of wild type ECE-1c increased in response to PMA treatment (150±13%, unpaired t-test, P<0.05, significantly different compared to untreated control). The two single mutants and one combined mutant significantly reduced the PMA induced phosphorylation (103-117±6-13%; unpaired t-test; n=8; P<0.05 significantly different compared to untreated control). The mutations had no effect on the basal ECE-1c phosphorylation. In addition, they had no effect on the catalytic activity as evidenced by the similar rate of substrate cleavage compared to wild type. This study is the first to confirm the residues phosphorylated upon the activation of PKC by PMA. The results complete a gap in our understanding of the mechanism(s) behind PKC induced trafficking of ECE-1.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Cytoplasm/enzymology , Metalloendopeptidases/chemistry , Protein Kinase C/chemistry , Animals , Aspartic Acid Endopeptidases/genetics , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Endothelin-Converting Enzymes , Gene Knockout Techniques , HEK293 Cells , Humans , Metalloendopeptidases/genetics , Mice , Mutation , Phosphorylation/genetics , Protein Structure, Tertiary , Tetradecanoylphorbol Acetate/chemistry , Tetradecanoylphorbol Acetate/pharmacology
14.
Nature ; 439(7076): 584-8, 2006 Feb 02.
Article in English | MEDLINE | ID: mdl-16292255

ABSTRACT

Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.


Subject(s)
Biological Evolution , Lizards/physiology , Snakes/physiology , Venoms/metabolism , Animals , Evolution, Molecular , Lizards/anatomy & histology , Male , Mice , Models, Molecular , Molecular Sequence Data , Phylogeny , Platelet Aggregation/drug effects , Protein Conformation , Rats , Snake Venoms/chemistry , Snake Venoms/metabolism , Snake Venoms/pharmacology , Snakes/anatomy & histology , Venoms/chemistry , Venoms/pharmacology
15.
Mol Cell Proteomics ; 9(11): 2369-90, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20631207

ABSTRACT

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A(2) toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms.


Subject(s)
Evolution, Molecular , Lizards , Venoms/chemistry , Amino Acid Sequence , Animals , Gene Library , Humans , Lizards/anatomy & histology , Lizards/classification , Lizards/metabolism , Male , Molecular Sequence Data , Phylogeny , Protein Precursors/genetics , Protein Precursors/metabolism , Rats , Rats, Sprague-Dawley , Sequence Alignment , Venoms/genetics , Venoms/metabolism
16.
J Alzheimers Dis ; 85(3): 943-955, 2022.
Article in English | MEDLINE | ID: mdl-34897090

ABSTRACT

Hypertension is a major risk factor for the pathogenesis of vascular dementia and Alzheimer's disease. Chronic activation of the renin-angiotensin system (RAS) contributes substantially to neuroinflammation. We propose that neuroinflammation arising from chronic RAS activation can initiate and potentiate the onset of hypertension and related dementia. Neuroinflammation induced by chronic activation of the RAS plays a key role in the pathogenesis of dementia. Increased levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and transforming growth factor (TGF)-ß have been reported in brain tissue of vascular dementia patients and animal models of vascular dementia induced by either angiotensin II infusion or transverse aortic coarctation. It is proposed that neuronal cell death and synaptic dysfunction induced by neuroinflammation lead to cognitive impairment in dementia. The neuroprotective RAS pathway, regulated by angiotensin-converting enzyme 2 (ACE2) which converts angiotensin II into angiotensin-(1-7), can attenuate hypertension and dementia. Furthermore, the use of anti-hypertensive medications in preventing dementia or cognitive decline in hypertensive patients and animal models of dementia have mostly been beneficial. Current evidence suggests a strong link between RAS induced neuroinflammation and the onset of hypertension and dementia, which warrants further investigation. Strategies to counteract an overactive RAS and enhance the neuroprotective arm of the RAS may help prevent or improve cognitive impairment associated with hypertension.


Subject(s)
Cytokines/metabolism , Dementia, Vascular/physiopathology , Hypertension/complications , Inflammation/complications , Renin-Angiotensin System/physiology , Angiotensin I , Angiotensin II/metabolism , Animals , Antihypertensive Agents/adverse effects , Antihypertensive Agents/therapeutic use , Brain/metabolism , Cytokines/immunology , Humans , Hypertension/drug therapy , Peptide Fragments
17.
Front Physiol ; 12: 813012, 2021.
Article in English | MEDLINE | ID: mdl-35087423

ABSTRACT

Despite current therapies for diabetic nephropathy, many patients continue to progress to end-stage renal disease requiring renal replacement therapy. While the precise mechanisms underlying diabetic nephropathy remain to be determined, it is well established that chronic activation of the renin angiotensin aldosterone system (RAAS) plays a substantial role in the pathogenesis of diabetic nephropathy. Angiotensin converting enzyme 2 (ACE2), the enzyme responsible for activating the reno-protective arm of the RAAS converts angiotensin (Ang) II into Ang 1-7 which exerts reno-protective effects. Chronic RAAS activation leads to kidney inflammation and fibrosis, and ultimately lead to end-stage kidney disease. Currently, angiotensin converting enzyme inhibitors and Ang II receptor blockers are approved for renal fibrosis and inflammation. Targeting the reno-protective arm of the RAAS should therefore, provide further treatment options for kidney fibrosis and inflammation. In this review, we examine how targeting the reno-protective arm of the RAAS can ameliorate kidney inflammation and fibrosis and rescue kidney function in diabetic nephropathy. We argue tissue ACE2 stimulation provides a unique and promising therapeutic approach for diabetic nephropathy.

18.
Biochem Biophys Res Commun ; 398(2): 173-7, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20558134

ABSTRACT

This study aimed to determine the consequences of Protein Kinase C (PKC) mediated Endothelin Converting Enzyme-1 (ECE-1) phosphorylation and its relationship to ECE-1 expression and shedding. The proteins on the surface of EA.hy926 cells were labelled with EZ-Link NHS-SS-Biotin both prior to (control) and following stimulation by 2 microM phorbol 12-myristate 13-acetate (PMA) which activates PKC. The biotinylated proteins were isolated using neutravidin beads, resolved by gel electrophoresis and analysed by western blotting using anti-ECE-1 antibodies. Significant increase in ECE-1 expression at the cell surface was observed following stimulation by PMA, compared to unstimulated control cells (170+/-32.3% of control, n=5). The ECE-1 activity (expressed as microM substrate cleaved/min) was determined by monitoring the cleavage of a quenched fluorescent substrate. The specificity of cleavage was confirmed using the ECE-1 inhibitor CGS35066. The stimulation of cells by PMA (1 microM, 6 h) significantly increased the ECE-1 activity (0.28+/-0.02; n=3) compared to the control (0.07+/-0.02; n=3). This increase was prevented by prior incubation with the PKC inhibitor bisindolymaleimide (BIM; 2 microM for 1 h; 0.10+/-0.01; n=3). Treatment with PMA also increased the activity of ECE-1 in the media (0.18+/-0.01; n=3) compared to control (0.08+/-0.01; n=3). In addition, this study confirmed by western immunoblotting that only the extracellular region of ECE-1 is released from the cell surface. These data indicate for the first time that PKC activation induces the trafficking and shedding of ECE to and from the cell surface, respectively.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Endothelial Cells/enzymology , Metalloendopeptidases/metabolism , Protein Kinase C/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Benzofurans/pharmacology , Cell Line , Endothelial Cells/drug effects , Endothelin-Converting Enzymes , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Metalloendopeptidases/antagonists & inhibitors , Organophosphonates/pharmacology , Phosphorylation , Protein Transport/drug effects , Tetradecanoylphorbol Acetate/pharmacology
19.
Sci Rep ; 9(1): 20231, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882843

ABSTRACT

We investigated the cardiovascular effects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell's viper (Daboia russelii), Javanese Russell's viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puff adder (Bitis arietans), and identified two distinct patterns of effects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused 'prolonged hypotension', characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no significant effect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B. arietans (all at 200 µg/kg, i.v.) induced mild transient hypotension. Artificial respiration prevented D. russelii venom induced prolonged hypotension but not rapid cardiovascular collapse from E. ocellatus venom. D. russelii venom (0.001-1 µg/ml) caused concentration-dependent relaxation (EC50 = 82.2 ± 15.3 ng/ml, Rmax = 91 ± 1%) in pre-contracted mesenteric arteries. In contrast, E. ocellatus venom (1 µg/ml) only produced a maximum relaxant effect of 27 ± 14%, suggesting that rapid cardiovascular collapse is unlikely to be due to peripheral vasodilation. The prevention of rapid cardiovascular collapse, by 'priming' doses of venom, supports a role for depletable endogenous mediators in this phenomenon.


Subject(s)
Cardiovascular System/drug effects , Hypertension/physiopathology , Mesenteric Arteries/drug effects , Vasodilation/drug effects , Viper Venoms/toxicity , Animals , Arterial Pressure/drug effects , Arterial Pressure/physiology , Cardiovascular System/physiopathology , Heart Rate/drug effects , Heart Rate/physiology , Hypertension/chemically induced , Male , Mesenteric Arteries/physiopathology , Myography/methods , Rats, Sprague-Dawley , Time Factors , Viper Venoms/administration & dosage
20.
Toxins (Basel) ; 11(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30939844

ABSTRACT

Russell's viper (Daboia russelii) venom causes a range of clinical effects in humans. Hypotension is an uncommon but severe complication of Russell's viper envenoming. The mechanism(s) responsible for this effect are unclear. In this study, we examined the cardiovascular effects of Sri Lankan D. russelii venom in anaesthetised rats and in isolated mesenteric arteries. D. russelii venom (100 µg/kg, i.v.) caused a 45 ± 8% decrease in blood pressure within 10 min of administration in anaesthetised (100 µg/kg ketamine/xylazine 10:1 ratio, i.p.) rats. Venom (1 ng/mL⁻1 µg/mL) caused concentration-dependent relaxation (EC50 = 145.4 ± 63.6 ng/mL, Rmax = 92 ± 2%) in U46619 pre-contracted rat small mesenteric arteries mounted in a myograph. Vasorelaxant potency of venom was unchanged in the presence of the nitric oxide synthase inhibitor, L-NAME (100 µM), or removal of the endothelium. In the presence of high K⁺ (30 mM), the vasorelaxant response to venom was abolished. Similarly, blocking voltage-dependent (Kv: 4-aminopryidine; 1000 µM) and Ca2+-activated (KCa: tetraethylammonium (TEA; 1000 µM); SKCa: apamin (0.1 µM); IKCa: TRAM-34 (1 µM); BKCa; iberiotoxin (0.1 µM)) K⁺ channels markedly attenuated venom-induced relaxation. Responses were unchanged in the presence of the ATP-sensitive K⁺ channel blocker glibenclamide (10 µM), or H1 receptor antagonist, mepyramine (0.1 µM). Venom-induced vasorelaxtion was also markedly decreased in the presence of the transient receptor potential cation channel subfamily V member 4 (TRPV4) antagonist, RN-1734 (10 µM). In conclusion, D. russelii-venom-induced hypotension in rodents may be due to activation of Kv and KCa channels, leading to vasorelaxation predominantly via an endothelium-independent mechanism. Further investigation is required to identify the toxin(s) responsible for this effect.


Subject(s)
Daboia , Mesenteric Arteries/drug effects , Potassium Channels, Calcium-Activated/physiology , Potassium Channels, Voltage-Gated/physiology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Viper Venoms/pharmacology , Animals , Male , Mesenteric Arteries/physiology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL