Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Article in English | MEDLINE | ID: mdl-37317853

ABSTRACT

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Subject(s)
Communicable Diseases , Transcription Factors , Humans , Mice , Animals , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Cytokines/metabolism , Communicable Diseases/metabolism , Cells, Cultured , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
2.
Proc Natl Acad Sci U S A ; 117(42): 26494-26502, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020273

ABSTRACT

During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.


Subject(s)
Eye/blood supply , Oncogene Proteins/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , Transcriptional Regulator ERG/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Animals, Newborn , Apoptosis/drug effects , Blood Vessels/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Indoles/pharmacology , Mice , Oxygen/metabolism , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/metabolism , Retinal Vessels/pathology
3.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798267

ABSTRACT

Background: During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods: Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.

4.
Blood Cancer Discov ; 3(4): 298-315, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35405004

ABSTRACT

Approximately 20% of patients with myeloproliferative neoplasms (MPN) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type I or type II. While type II CALR-mutant proteins retain many of the Ca2+ binding sites present in the wild-type protein, type I CALR-mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain unexplored. Here, we show that the loss of Ca2+ binding residues in the type I mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1α/XBP1 pathway of the unfolded protein response. Genetic or pharmacologic inhibition of IRE1α/XBP1 signaling induces cell death in type I mutant but not type II mutant or wild-type CALR-expressing cells, and abrogates type I mutant CALR-driven MPN disease progression in vivo. SIGNIFICANCE: Current targeted therapies for CALR-mutated MPNs are not curative and fail to differentiate between type I- versus type II-driven disease. To improve treatment strategies, it is critical to identify CALR mutation type-specific vulnerabilities. Here we show that IRE1α/XBP1 represents a unique, targetable dependency specific to type I CALR-mutated MPNs. This article is highlighted in the In This Issue feature, p. 265.


Subject(s)
Calreticulin , Myeloproliferative Disorders , Neoplasms , Unfolded Protein Response , Calcium/metabolism , Calreticulin/genetics , Endoribonucleases/genetics , Humans , Mutant Proteins/chemistry , Mutation , Myeloproliferative Disorders/genetics , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics
5.
PLoS One ; 16(6): e0253519, 2021.
Article in English | MEDLINE | ID: mdl-34153072

ABSTRACT

The receptor-interacting protein kinase 3 (RIPK3) is a multi-functional protein best known for facilitating cellular necroptosis and inflammation. Recent evidence from our lab indicates that RIPK3 expression must be tightly regulated in endothelial cells to promote angiogenesis, to maintain vascular integrity during embryogenesis, and to provide protection from postnatal atherosclerosis. RIPK3 activity and stability are regulated by post-translational modifications and caspase-dependent cleavage. However, less is known about the transcriptional regulation of Ripk3. Here we utilized an unbiased CRISPR-based technology called genomic locus proteomics (GLoPro) to screen transcription factors and coregulatory proteins associated with the Ripk3 locus in a murine endothelial cell line. We found that 41 nuclear proteins are specifically enriched at the Ripk3 locus, including the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway components NFκB1 and IKBKG. We further verified that NFκB1 and IKBKG directly bind the Ripk3 promoter and prevent TNFα-induced Ripk3 transcription in cultured human primary endothelial cells. Moreover, NFκB1 prevents RIPK3-mediated death of primary endothelial cells. These data provide new insights into NF-κB signaling and Ripk3 transcriptional regulation in endothelial cells.


Subject(s)
Endothelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B p50 Subunit/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Cell Line , Chromatin Immunoprecipitation , Gene Expression Regulation , Gene Knockout Techniques , Intracellular Signaling Peptides and Proteins/genetics , Mice , NF-kappa B p50 Subunit/genetics , Proteomics/methods , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Transcription Factors/genetics
6.
Acta Biochim Pol ; 67(4): 605-611, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33108147

ABSTRACT

In the present study, we investigated the influence of resveratrol on PhIP treated human colon cancer cells and compared the effect to HaCaT cells considered as normal, human keratinocytes. Our results show that resveratrol decreases DNA damage in both cell types, it increases the sensitivity of LoVo cells to apoptosis and has no effect on PhIP-treated HaCaT cells. We confirm that PhIP-induced apoptosis is p53 and caspase 3/7 dependent. Interestingly, normal cells such as HaCaT, which lack functional p53 are more resistant to PhIP treatment.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Carcinogens/pharmacology , Imidazoles/pharmacology , Resveratrol/pharmacology , Apoptosis/genetics , Caspase 3/genetics , Caspase 3/metabolism , Caspase 7/genetics , Caspase 7/metabolism , Cell Line, Tumor , Drug Synergism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression Regulation , HaCaT Cells , Humans , Organ Specificity , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL