Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Nature ; 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39443803

ABSTRACT

Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that  bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.

2.
Genes Dev ; 32(19-20): 1297-1302, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30228204

ABSTRACT

The CNS of the protovertebrate Ciona intestinalis contains a single cluster of dopaminergic (DA) neurons, the coronet cells, which have been likened to the hypothalamus of vertebrates. Whole-embryo single-cell RNA sequencing (RNA-seq) assays identified Ptf1a as the most strongly expressed cell-specific transcription factor (TF) in DA/coronet cells. Knockdown of Ptf1a activity results in their loss, while misexpression results in the appearance of supernumerary DA/coronet cells. Photoreceptor cells and ependymal cells are the most susceptible to transformation, and both cell types express high levels of Meis Coexpression of both Ptf1a and Meis caused the wholesale transformation of the entire CNS into DA/coronet cells. We therefore suggest that the reiterative use of functional manipulations and single-cell RNA-seq assays is an effective means for the identification of regulatory cocktails underlying the specification of specific cell identities.


Subject(s)
Ciona intestinalis/genetics , Dopaminergic Neurons/metabolism , Animals , Cell Differentiation , Ciona intestinalis/embryology , Ciona intestinalis/growth & development , Ciona intestinalis/metabolism , Dopaminergic Neurons/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Single-Cell Analysis , Transcription Factors/metabolism
3.
Cell Mol Life Sci ; 81(1): 428, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379743

ABSTRACT

Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin (exo-rhodopsin) gene for pineal photoreception. Here, our analysis of non-teleost and teleost fishes in various lineages of the Actinopterygii reveals that retroduplication after branching of the Polypteriformes produced the intron-less rhodopsin gene for visual photoreception, which converted the parental intron-containing rhodopsin gene into a pineal opsin in the common ancestor of the Teleostei. Additional analysis of a pineal opsin, pinopsin, shows that the pinopsin gene functions as a green-sensitive opsin together with the intron-containing rhodopsin gene for pineal photoreception in tarpon as an evolutionary intermediate state but is missing in other teleost fishes, probably because of the redundancy with the intron-containing rhodopsin gene. We propose an evolutionary scenario where unique retroduplication caused a "domino effect" on the functional diversification of teleost visual and pineal opsin genes.


Subject(s)
Evolution, Molecular , Fishes , Opsins , Phylogeny , Pineal Gland , Rhodopsin , Animals , Fishes/genetics , Pineal Gland/metabolism , Opsins/genetics , Opsins/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Introns/genetics , Amino Acid Sequence , Gene Duplication
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042818

ABSTRACT

The protovertebrate Ciona intestinalis type A (sometimes called Ciona robusta) contains a series of sensory cell types distributed across the head-tail axis of swimming tadpoles. They arise from lateral regions of the neural plate that exhibit properties of vertebrate placodes and neural crest. The sensory determinant POU IV/Brn3 is known to work in concert with regional determinants, such as Foxg and Neurogenin, to produce palp sensory cells (PSCs) and bipolar tail neurons (BTNs), in head and tail regions, respectively. A combination of single-cell RNA-sequencing (scRNA-seq) assays, computational analysis, and experimental manipulations suggests that misexpression of POU IV results in variable transformations of epidermal cells into hybrid sensory cell types, including those exhibiting properties of both PSCs and BTNs. Hybrid properties are due to coexpression of Foxg and Neurogenin that is triggered by an unexpected POU IV feedback loop. Hybrid cells were also found to express a synthetic gene battery that is not coexpressed in any known cell type. We discuss these results with respect to the opportunities and challenges of reprogramming cell types through the targeted misexpression of cellular determinants.


Subject(s)
Ciona intestinalis/genetics , Neurons/metabolism , POU Domain Factors/metabolism , Animals , Biological Evolution , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Ciona intestinalis/metabolism , Epidermis/innervation , Epidermis/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Neural Crest/metabolism , Neural Plate/metabolism , POU Domain Factors/genetics , Single-Cell Analysis , Transcription Factors/metabolism , Vertebrates/genetics
5.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34121117

ABSTRACT

The Ciona larva has served as a unique model for understanding the development of dopaminergic cells at single-cell resolution owing to the exceptionally small number of neurons in its brain and its fixed cell lineage during embryogenesis. A recent study suggested that the transcription factors Fer2 and Meis directly regulate the dopamine synthesis genes in Ciona, but the dopaminergic cell lineage and the gene regulatory networks that control the development of dopaminergic cells have not been fully elucidated. Here, we reveal that the dopaminergic cells in Ciona are derived from a bilateral pair of cells called a9.37 cells at the center of the neural plate. The a9.37 cells divide along the anterior-posterior axis, and all of the descendants of the posterior daughter cells differentiate into the dopaminergic cells. We show that the MAPK pathway and the transcription factor Otx are required for the expression of Fer2 in the dopaminergic cell lineage. Our findings establish the cellular and molecular framework for fully understanding the commitment to dopaminergic cells in the simple chordate brain.


Subject(s)
Brain/cytology , Brain/metabolism , Cell Differentiation/genetics , Ciona/genetics , Dopaminergic Neurons/metabolism , Mitogen-Activated Protein Kinases/genetics , Otx Transcription Factors/genetics , Animals , Biomarkers , Cell Lineage/genetics , Ciona/cytology , Dopaminergic Neurons/cytology , Fluorescent Antibody Technique , Gene Expression , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mitogen-Activated Protein Kinases/metabolism , Neural Plate/cytology , Neural Plate/metabolism , Otx Transcription Factors/metabolism , Signal Transduction
6.
Nature ; 524(7566): 462-5, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26258298

ABSTRACT

The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.


Subject(s)
Ciona intestinalis/cytology , Ciona intestinalis/embryology , Neurons/cytology , Vertebrates/anatomy & histology , Vertebrates/embryology , Animals , Body Patterning , Bone Morphogenetic Proteins , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Ectoderm/metabolism , Gonadotropin-Releasing Hormone/metabolism , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Larva/cytology , Larva/metabolism , Molecular Sequence Data , Neurons/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, G-Protein-Coupled/metabolism , Vertebrates/physiology
7.
Dev Biol ; 445(2): 245-255, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30502325

ABSTRACT

The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.


Subject(s)
Ciona intestinalis/growth & development , Ciona intestinalis/genetics , Homeodomain Proteins/genetics , Photoreceptor Cells, Invertebrate/cytology , Animals , Animals, Genetically Modified , Base Sequence , Binding Sites/genetics , Cell Lineage/genetics , Ciona intestinalis/cytology , Evolution, Molecular , Gene Expression Regulation, Developmental , Larva/cytology , Larva/genetics , Larva/growth & development , Mitosis/genetics , Regulatory Sequences, Ribonucleic Acid , Spatio-Temporal Analysis
8.
Nucleic Acids Res ; 46(D1): D718-D725, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29149270

ABSTRACT

ANISEED (www.aniseed.cnrs.fr) is the main model organism database for tunicates, the sister-group of vertebrates. This release gives access to annotated genomes, gene expression patterns, and anatomical descriptions for nine ascidian species. It provides increased integration with external molecular and taxonomy databases, better support for epigenomics datasets, in particular RNA-seq, ChIP-seq and SELEX-seq, and features novel interactive interfaces for existing and novel datatypes. In particular, the cross-species navigation and comparison is enhanced through a novel taxonomy section describing each represented species and through the implementation of interactive phylogenetic gene trees for 60% of tunicate genes. The gene expression section displays the results of RNA-seq experiments for the three major model species of solitary ascidians. Gene expression is controlled by the binding of transcription factors to cis-regulatory sequences. A high-resolution description of the DNA-binding specificity for 131 Ciona robusta (formerly C. intestinalis type A) transcription factors by SELEX-seq is provided and used to map candidate binding sites across the Ciona robusta and Phallusia mammillata genomes. Finally, use of a WashU Epigenome browser enhances genome navigation, while a Genomicus server was set up to explore microsynteny relationships within tunicates and with vertebrates, Amphioxus, echinoderms and hemichordates.


Subject(s)
Databases, Genetic , Datasets as Topic , Genome , Urochordata/genetics , Animals , Biological Evolution , Ciona intestinalis/genetics , DNA/metabolism , Data Mining , Evolution, Molecular , Gene Expression , Gene Ontology , Internet , Molecular Sequence Annotation , Phylogeny , Protein Binding , Species Specificity , Transcription Factors/metabolism , Transcription, Genetic , Vertebrates/genetics , Web Browser
9.
Proc Natl Acad Sci U S A ; 114(23): 6028-6033, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533401

ABSTRACT

Ci-opsin1 is a visible light-sensitive opsin present in the larval ocellus of an ascidian, Ciona intestinalis This invertebrate opsin belongs to the vertebrate visual and nonvisual opsin groups in the opsin phylogenetic tree. Ci-opsin1 contains candidate counterions (glutamic acid residues) at positions 113 and 181; the former is a newly acquired position in the vertebrate visual opsin lineage, whereas the latter is an ancestral position widely conserved among invertebrate opsins. Here, we show that Glu113 and Glu181 in Ci-opsin1 act synergistically as counterions, which imparts molecular properties to Ci-opsin1 intermediate between those of vertebrate- and invertebrate-type opsins. Synergy between the counterions in Ci-opsin1 was demonstrated by E113Q and E181Q mutants that exhibit a pH-dependent spectral shift, whereas only the E113Q mutation in vertebrate rhodopsin yields this spectral shift. On absorbing light, Ci-opsin1 forms an equilibrium between two intermediates with protonated and deprotonated Schiff bases, namely the MI-like and MII-like intermediates, respectively. Adding G protein caused the equilibrium to shift toward the MI-like intermediate, indicating that Ci-opsin1 has a protonated Schiff base in its active state, like invertebrate-type opsins. Ci-opsin1's G protein activation efficiency is between the efficiencies of vertebrate- and invertebrate-type opsins. Interestingly, the E113Y and E181S mutations change the molecular properties of Ci-opsin1 into those resembling invertebrate-type or bistable opsins and vertebrate ancient/vertebrate ancient-long or monostable opsins, respectively. These results strongly suggest that acquisition of counterion Glu113 changed the molecular properties of visual opsin in a vertebrate/tunicate common ancestor as a crucial step in the evolution of vertebrate visual opsins.


Subject(s)
Opsins/chemistry , Opsins/metabolism , Opsins/physiology , Amino Acid Sequence , Animals , Biological Evolution , Ciona intestinalis/physiology , Evolution, Molecular , GTP-Binding Proteins/metabolism , Glutamic Acid/metabolism , Phylogeny , Receptors, G-Protein-Coupled/metabolism , Rhodopsin/metabolism , Rod Opsins/metabolism , Urochordata/physiology
10.
Genome Res ; 26(1): 140-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26668163

ABSTRACT

The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.


Subject(s)
Ciona intestinalis/genetics , Promoter Regions, Genetic , Transcription Initiation Site , Animals , Drosophila/genetics , Gene Expression Regulation , Humans , Multigene Family , Trans-Splicing
11.
Adv Exp Med Biol ; 1029: 49-68, 2018.
Article in English | MEDLINE | ID: mdl-29542080

ABSTRACT

Ascidians possess relatively small and compact genomes. This feature enables us to easily isolate cis-regulatory DNAs of genes of interest. Particularly, cis-regulatory DNAs of genes showing tissue- or cell-type-specific expression are routinely used for the artificial induction of gene expression. This strategy helps us to label cells, tissues, and organs of interest, and to investigate gene functions through overexpression, ectopic expression, and the disruption of functions by dominant-negative forms. Thus, cis-regulatory DNAs provide a powerful tool for tissue-specific genetic manipulation in studies of ascidian development and physiology. This chapter summarizes the types of cis-regulatory DNAs as a genetic manipulation tool, describes the methods used for isolating cis-regulatory DNAs, and provide reported examples of the use of cis-regulatory DNAs as molecular tools for investigating gene functions.


Subject(s)
Gene Expression Regulation, Developmental , Gene Transfer Techniques , Urochordata/genetics , Animals , Cell Lineage , DNA, Recombinant/administration & dosage , DNA, Recombinant/genetics , Embryo, Nonmammalian/cytology , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental/genetics , Genes, Synthetic , Genetic Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Larva , Organ Specificity , Promoter Regions, Genetic , Transcription, Genetic , Transgenes , Urochordata/embryology , Urochordata/growth & development
12.
Dev Biol ; 420(1): 178-185, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27789227

ABSTRACT

The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.


Subject(s)
Cell Lineage , Ciona intestinalis/cytology , Neural Crest/cytology , Neural Tube/cytology , Photoreceptor Cells, Invertebrate/cytology , Sense Organs/cytology , Animals , Cell Count , Ciona intestinalis/metabolism , Larva/cytology , Optical Imaging , Photoreceptor Cells, Invertebrate/metabolism , Pigmentation , Retinal Pigment Epithelium/cytology
13.
Nature ; 469(7331): 525-8, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21196932

ABSTRACT

In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.


Subject(s)
Cell Differentiation , Urochordata/growth & development , Animals , Central Nervous System/cytology , Central Nervous System/growth & development , Larva , Metamorphosis, Biological , Neural Stem Cells/cytology
14.
Dev Biol ; 392(1): 117-29, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24797636

ABSTRACT

The vertebrate retina contains two types of photoreceptor cells, rods and cones, which use distinct types of opsins and phototransduction proteins. Cones can be further divided into several subtypes with differing wavelength sensitivity and morphology. Although photoreceptor development has been extensively studied in a variety of vertebrate species, the mechanism by which photoreceptor subtypes are established is still largely unknown. Here we report two microRNAs (miRNAs), miR-726 and miR-729, which are potentially involved in photoreceptor subtype specification. In the medaka Oryzias latipes, the genes encoding miR-726 and miR-729 are located upstream of the red-sensitive opsin gene LWS-A and the UV-sensitive opsin gene SWS1, respectively, and are transcribed in the opposite direction from the respective opsin genes. The miR-726/LWS pair is conserved between teleosts and tetrapods, and the miR-729/SWS1 pair is conserved among teleosts. in situ hybridization analyses and fluorescence reporter assays suggest that these miRNAs are co-expressed with the respective opsins in specific cone subtypes. Potential targets of miR-726 and miR-729 predicted in silico include several transcription factors that regulate photoreceptor development. Functional analyses of cis-regulatory sequences in vivo suggest that transcription of the paired microRNA and opsin genes is co-regulated by common cis-regulatory modules. We propose an evolutionarily conserved mechanism that controls photoreceptor subtype identity through coupling between transcriptional and post-transcriptional regulations.


Subject(s)
Cone Opsins/genetics , Evolution, Molecular , MicroRNAs/genetics , Oryzias/genetics , Retinal Cone Photoreceptor Cells/classification , Animals , Base Sequence , Cone Opsins/biosynthesis , Conserved Sequence/genetics , Gene Expression Regulation , MicroRNAs/biosynthesis , Photoreceptor Cells, Vertebrate , Retina/cytology , Retina/physiology , Sequence Alignment , Sequence Analysis, DNA , Transcription, Genetic
15.
Nat Genet ; 38(6): 674-81, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16682973

ABSTRACT

The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle-dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.


Subject(s)
Activating Transcription Factor 4/genetics , Antigens, Neoplasm/genetics , Mutation , Neoplasm Proteins/genetics , Animals , Cell Cycle Proteins , Cytoskeletal Proteins , Female , Genetic Linkage , Humans , In Situ Hybridization , Male , Pedigree , Syndrome , Zebrafish
16.
Dev Dyn ; 243(12): 1524-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25130398

ABSTRACT

BACKGROUND: Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. RESULTS: We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. CONCLUSIONS: This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs.


Subject(s)
Ciona intestinalis/embryology , Gonadotropin-Releasing Hormone/metabolism , Metamorphosis, Biological/physiology , Animals , Cell Cycle Checkpoints/physiology , Cyclic AMP/metabolism , Larva/metabolism
17.
Nat Genet ; 37(3): 282-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15723066

ABSTRACT

Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.


Subject(s)
Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Calmodulin/metabolism , Eye Proteins/metabolism , Mutation , Amino Acid Sequence , Blotting, Northern , Calmodulin-Binding Proteins/chemistry , Female , Humans , Male , Molecular Sequence Data , Pedigree , Syndrome , Two-Hybrid System Techniques
18.
NAR Genom Bioinform ; 6(2): lqae067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846348

ABSTRACT

Trans-splicing is a post-transcriptional processing event that joins exons from separate RNAs to produce a chimeric RNA. However, the detailed mechanism of trans-splicing remains poorly understood. Here, we characterize trans-spliced genes and provide insights into the mechanism of trans-splicing in the tunicate Ciona. Tunicates are the closest invertebrates to humans, and their genes frequently undergo trans-splicing. Our analysis revealed that, in genes that give rise to both trans-spliced and non-trans-spliced messenger RNAs, trans-splice acceptor sites were preferentially located at the first functional acceptor site, and their paired donor sites were weak in both Ciona and humans. Additionally, we found that Ciona trans-spliced genes had GU- and AU-rich 5' transcribed regions. Our data and findings not only are useful for Ciona research community, but may also aid in a better understanding of the trans-splicing mechanism, potentially advancing the development of gene therapy based on trans-splicing.

19.
Genome Res ; 20(10): 1459-68, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20647237

ABSTRACT

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.


Subject(s)
Databases, Factual , Developmental Biology/methods , Gene Expression Regulation, Developmental , Image Processing, Computer-Assisted/methods , Internet , Urochordata , Animals , Chordata/embryology , Chordata/genetics , Chordata/growth & development , Computational Biology/methods , Urochordata/embryology , Urochordata/genetics , Urochordata/growth & development
20.
Nucleic Acids Res ; 39(7): 2638-48, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21109525

ABSTRACT

In conventionally-expressed eukaryotic genes, transcription start sites (TSSs) can be identified by mapping the mature mRNA 5'-terminal sequence onto the genome. However, this approach is not applicable to genes that undergo pre-mRNA 5'-leader trans-splicing (SL trans-splicing) because the original 5'-segment of the primary transcript is replaced by the spliced leader sequence during the trans-splicing reaction and is discarded. Thus TSS mapping for trans-spliced genes requires different approaches. We describe two such approaches and show that they generate precisely agreeing results for an SL trans-spliced gene encoding the muscle protein troponin I in the ascidian tunicate chordate Ciona intestinalis. One method is based on experimental deletion of trans-splice acceptor sites and the other is based on high-throughput mRNA 5'-RACE sequence analysis of natural RNA populations in order to detect minor transcripts containing the pre-mRNA's original 5'-end. Both methods identified a single major troponin I TSS located ∼460 nt upstream of the trans-splice acceptor site. Further experimental analysis identified a functionally important TATA element 31 nt upstream of the start site. The two methods employed have complementary strengths and are broadly applicable to mapping promoters/TSSs for trans-spliced genes in tunicates and in trans-splicing organisms from other phyla.


Subject(s)
Chromosome Mapping/methods , Ciona intestinalis/genetics , Promoter Regions, Genetic , Trans-Splicing , Transcription Initiation Site , Troponin I/genetics , 5' Untranslated Regions , Animals , High-Throughput Nucleotide Sequencing , Sequence Analysis, RNA , TATA Box
SELECTION OF CITATIONS
SEARCH DETAIL