Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Prostate ; 82(14): 1389-1399, 2022 10.
Article in English | MEDLINE | ID: mdl-35821621

ABSTRACT

BACKGROUND: Androgen deprivation therapy (ADT) is a standard treatment modality for locally advanced, high-risk, and metastatic hormone-sensitive prostate cancer. Long-term ADT treatment likely develops side-effects that include changes in cognition or onset of dementia. However, the molecular understanding of this effect remains elusive. We attempt to establish a link between ADT and changes in cognitive function using patient databases and bioinformatics analyses. METHODS: Gene expression profiling was performed using RNA sequencing data from Alzheimer patient cohort and compared with the data from advanced-stage prostate cancer patients receiving neoadjuvant antiandrogen therapy. Differentially expressed genes (DEGs) were analyzed using the Ingenuity knowledge database. RESULTS: A total of 1952 DEGs in the Alzheimer patient cohort and 101 DEGs were identified in ADT treated prostate cancer patients. Comparing both data sets provided a subset of 33 commonly expressed genes involving cytokine-cytokine signaling with an over representation of cytokine-cytokine receptor interaction, inflammatory cytokines, signaling by interleukins together with alterations in the circulating lymphocyte repertoire, adaptive immune responses, regulation of cytokine production, and changes in T-cell subsets. Additionally, lipopolysaccharide, tumor necrosis factor, and toll-like receptors were identified as upstream transcriptional regulators of these pathways. The most commonly expressed genes viz. IL-17A, CCL2, IL-10, IL-6, IL-1RN, LIF/LIFR were further validated by quantitative RT-PCR exhibited higher expression in antiandrogen treated neuronal, glial, and androgen-responsive prostate cancer cells, compared to no-androgen antagonist treatment. CONCLUSIONS: Our findings suggest that changes in cytokine signaling under the influence of ADT in prostate cancer patients may be linked with cognitive impairment presenting new avenues for diagnostic and therapeutic development in combating brain deficits.


Subject(s)
Alzheimer Disease , Prostatic Neoplasms , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Androgen Antagonists/adverse effects , Cognition , Cytokines/genetics , Gene Expression , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism
2.
Microb Pathog ; 157: 104954, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34033891

ABSTRACT

Coronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ≈ 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (-6.16 to -12.27 kcal/mol) compared to the standard inhibitors (-2.55 to -6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules.


Subject(s)
COVID-19 , Panax , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/pharmacology , SARS-CoV-2 , Virulence
3.
Mol Biol Rep ; 48(5): 4703-4719, 2021 May.
Article in English | MEDLINE | ID: mdl-34014468

ABSTRACT

The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Neoplasm Metastasis/genetics , Neoplasms/genetics , Transcription Factors/genetics , Cell Proliferation/genetics , Gene Regulatory Networks/genetics , Humans , Neoplasm Metastasis/pathology , Neoplasms/pathology , Protein Interaction Maps/genetics
4.
Toxicol Appl Pharmacol ; 409: 115297, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33091442

ABSTRACT

Breast cancer is one of the most common types of cancer in the world and a major cause of mortality. Present therapeutic strategies against breast cancer have severe drawbacks such as allergies, damage to healthy tissues, reoccurrence of cancer, and emergence of drug resistance. Naphthylisoquinoline alkaloids are a group of structurally unique natural products produced by tropical lianas belonging to the plant families Dioncophyllaceae and Ancistrocladaceae indigenous to Asia and Africa. These secondary metabolites have been reported to show anti-infective activity, but they also act against leukemic and pancreatic cancer cells. In the present study we have tested the potential of eleven mono- and dimeric naphthylisoquinoline compounds against two breast cancer cell lines, MCF-7 and MDA-MB-231. Three out of the compounds (agents 1, 4, and 11) showed significant activities against both tested cancer cell lines. Further mechanistic investigations revealed that all of the three substances induce apoptotic cell death via its intrinsic pathway by causing deformation of the nuclear membrane, disruption of the mitochondrial membrane potential (MMP), and elevated reactive oxygen species (ROS) production in both cell lines. Flow cytometric analysis using Annexin V - FITC/PI double staining showed an increased number of apoptotic cells in both, the early and the late phases.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Quinolines/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
5.
Cancers (Basel) ; 16(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38254738

ABSTRACT

The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.

6.
Cancers (Basel) ; 15(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36672280

ABSTRACT

Prostate cancer is a complex heterogeneous disease that affects millions of males worldwide. Despite rapid advances in molecular biology and innovation in technology, few biomarkers have been forthcoming in prostate cancer. The currently available biomarkers for the prognosis of prostate cancer are inadequate and face challenges, thus having limited clinical utility. To date, there are a number of prognostic and predictive biomarkers identified for prostate cancer but lack specificity and sensitivity to guide clinical decision making. There is still tremendous scope for specific biomarkers to understand the natural history and complex biology of this heterogeneous disease, and to identify early treatment responses. Accumulative studies indicate that aquaporins (AQPs) a family of membrane water channels may serve as a prognostic biomarker for prostate cancer in monitoring disease advancement. In the present review, we discuss the existing prostate cancer biomarkers, their limitations, and aquaporins as a prospective biomarker of prognostic significance in prostate cancer.

7.
Cancer Lett ; 560: 216143, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36958695

ABSTRACT

Epigenetic modifications regulate critical biological processes that play a pivotal role in the pathogenesis of cancer. Enhancer of Zeste Homolog 2 (EZH2), a subunit of the Polycomb-Repressive Complex 2, catalyzes trimethylation of histone H3 on Lys 27 (H3K27) involved in gene silencing. EZH2 is amplified in human cancers and has roles in regulating several cellular processes, including survival, proliferation, invasion, and self-renewal. Though EZH2 is responsible for gene silencing through its canonical role, it also regulates the transcription of several genes promoting carcinogenesis via its non-canonical role. Constitutive activation of Nuclear Factor-kappaB (NF-κB) plays a crucial role in the development and progression of human malignancies. NF-κB is essential for regulating innate and adaptive immune responses and is one of the most important molecules that increases survival during carcinogenesis. Given the evidence that increased survival and proliferation are essential for tumor development and their association with epigenetic modifications, it seems plausible that EZH2 and NF-κB crosstalk may promote cancer progression. In this review, we expand on how EZH2 and NF-κB regulate cellular responses during cancer and their crosstalk of the canonical and non-canonical roles in a context-dependent manner.


Subject(s)
NF-kappa B , Neoplasms , Humans , NF-kappa B/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Signal Transduction , Carcinogenesis
8.
Life (Basel) ; 14(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38276262

ABSTRACT

Chronic kidney disease (CKD) poses a global health challenge, engendering various physiological and metabolic shifts that significantly impact health and escalate the susceptibility to severe illnesses. This comprehensive review delves into the intricate complexities of CKD, scrutinizing its influence on cellular growth homeostasis, hormonal equilibrium, wasting, malnutrition, and its interconnectedness with inflammation, oxidative stress, and cardiovascular diseases. Exploring the genetic, birth-related, and comorbidity factors associated with CKD, alongside considerations of metabolic disturbances, anemia, and malnutrition, the review elucidates how CKD orchestrates cellular growth control. A pivotal focus lies on the nexus between CKD and insulin resistance, where debates persist regarding its chronological relationship with impaired kidney function. The prevalence of insulin abnormalities in CKD is emphasized, contributing to glucose intolerance and raising questions about its role as a precursor or consequence. Moreover, the review sheds light on disruptions in the growth hormone and insulin-like growth factor axis in CKD, underscoring the heightened vulnerability to illness and mortality in cases of severe growth retardation. Wasting, a prevalent concern affecting up to 75% of end-stage renal disease (ESRD) patients, is analyzed, elucidating the manifestations of cachexia and its impact on appetite, energy expenditure, and protein reserves. Taste disturbances in CKD, affecting sour, umami, and salty tastes, are explored for their implications on food palatability and nutritional status. Independent of age and gender, these taste alterations have the potential to sway dietary choices, further complicating the management of CKD. The intricate interplay between CKD, inflammation, oxidative stress, and cardiovascular diseases is unraveled, emphasizing the profound repercussions on overall health. Additionally, the review extends its analysis to CKD's broader impact on cognitive function, emotional well-being, taste perception, and endothelial dysfunction. Concluding with an emphasis on dietary interventions as crucial components in CKD management, this comprehensive review navigates the multifaceted dimensions of CKD, providing a nuanced understanding essential for developing targeted therapeutic strategies.

9.
Med Oncol ; 40(6): 169, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156972

ABSTRACT

The present study reports anticancer and antioxidant activities of Callistemon lanceolatus bark extracts. Anticancer activity was studied against MDA-MB-231 cells. Antioxidant assessment of the chloroform and methanol extracts showed considerable free radical scavenging, metal ion chelating, and reducing power potential. Chloroform extract exhibited potent inhibition of cancer cell proliferation in MTT assay (IC50 9.6 µg/ml) and promoted programmed cell death. Reactive oxygen species (ROS) generation, mitochondria membrane potential (MMP) disruption ability, and nuclear morphology changes were studied using H2-DCFDA, JC-1, and Hoechst dyes, respectively, using confocal microscopy. Apoptotic cells exhibited fragmented nuclei, increased ROS generation, and altered MMP in dose- and time-dependent manner. Chloroform extract upregulated the BAX-1 and CASP3 mRNA expression coupled with downregulation of BCL-2 gene. Further, in silico docking of phytochemicals present in C. lanceolatus with anti-apoptotic Bcl-2 protein endorsed apoptosis by its inhibition and thus corroborated the experimental findings. Obatoclax, a known inhibitor of Bcl-2 was used as a reference compounds.


Subject(s)
Antioxidants , Plant Extracts , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chloroform , Plant Bark/metabolism , Apoptosis , Cell Proliferation , Proto-Oncogene Proteins c-bcl-2 , Cell Line, Tumor
10.
Nat Prod Res ; : 1-5, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36987744

ABSTRACT

Ancistrobrevinium A (1) is the first N-methylated and non-hydrogenated, and thus cationic naphthylisoquinoline alkaloid. It was discovered in the root bark extract of the phytochemically productive West African liana Ancistrocladus abbreviatus (Ancistrocladaceae). Its constitution was elucidated by HR-ESI-MS and 1D and 2D NMR. Due to the steric hindrance in the proximity of the linkage between the naphthalene and isoquinoline parts, the biaryl axis is rotationally hindered. It thus constitutes a stable element of chirality - the only one in the new alkaloid since, different from most other naphthylisoquinoline alkaloids, it has no stereogenic centers. The axial configuration of 1 was assigned by electronic circular dichroism (ECD) investigations, which gave a positive couplet, indicating a 'positive chirality', here corresponding to a P-configuration. Ancistrobrevinium A (1) showed a weak cytotoxic activity against A549 lung cancer cells (IC50 = 50.6 µM).

11.
Vegetos ; 36(2): 701-720, 2023.
Article in English | MEDLINE | ID: mdl-35729946

ABSTRACT

Abstract: Coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected approximately 26 million people and caused more than 6 million deaths globally. Spike (S)-protein on the outer surface of the virus uses human trans-membrane serine protease-2 (TMPRSS2) to gain entry into the cell. Recent reports indicate that human dipeptidyl peptidase-4 inhibitors (DPP4 or CD26) could also be utilized to check the S-protein mediated viral entry into COVID-19 patients. RNA dependent RNA polymerase (RdRp) is another key virulence protein of SARS-CoV-2 life cycle. The study aimed to identify the potential anti-SARS-CoV-2 inhibitors present in Withania somnifera (Solanaceae) using computer aided drug discovery approach. Molecular docking results showed that flavone glycoside, sugar alcohol, and flavonoid present in W. somnifera showed - 11.69, - 11.61, - 10.1, - 7.71 kcal/mole binding potential against S-protein, CD26, RdRp, and TMPRSS2 proteins. The major standard inhibitors of the targeted proteins (Sitagliptin, VE607, Camostat mesylate, and Remdesivir) showed the - 7.181, - 6.6, - 5.146, and - 7.56 kcal/mole binding potential. Furthermore, the lead phytochemicals and standard inhibitors bound and non-bound RdRp and TMPRSS2 proteins were subjected to molecular dynamics (MD) simulation to study the complex stability and change in protein conformation. The result showed energetically favorable and stable complex formation in terms of RMSD, RMSF, SASA, Rg, and hydrogen bond formation. Drug likeness and physiochemical properties of the test compounds exhibited satisfactory results. Taken together, the present study suggests the presence of potential anti-SARS-CoV-2 phytochemicals in W. somnifera that requires further validation in in vitro and in vivo studies. Supplementary information: The online version contains supplementary material available at 10.1007/s42535-022-00404-4.

12.
J Biomol Struct Dyn ; : 1-22, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639498

ABSTRACT

Elevated levels of alkaline phosphatase (ALP) in the tumor microenvironment (TME) are a hallmark of cancer progression and thus inhibition of ALP could serve as an effective approach against cancer. Herein, we developed a novel prodrug approach to tackle cancer that bears self-inhibiting alkaline phosphatase-responsiveness properties that can enhance at the same time the solubility of the parent compound. To probe this novel concept, we selected apigenin as the cytotoxic agent since we first unveiled, that it directly interacts and inhibits ALP activity. Consequently, we rationally designed and synthesized, using a self-immolative linker, an ALP responsive apigenin-based phosphate prodrug, phospho-apigenin. Phospho-apigenin markedly increased the stability of the parent compound apigenin. Furthermore, the prodrug exhibited enhanced antiproliferative effect in malignant cells with elevated ALP levels, compared to apigenin. This recorded potency of the developed prodrug was further confirmed in vivo where phospho-apigenin significantly suppressed by 52.8% the growth of PC-3 xenograft tumors.Communicated by Ramaswamy H. Sarma.

13.
Cancer Drug Resist ; 5(3): 846-849, 2022.
Article in English | MEDLINE | ID: mdl-36176749

ABSTRACT

Prostate cancer is the most common cancer and is the second leading cause of cancer-related deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard treatment for advanced-stage prostate cancer; however, this treatment eventually fails, leading to an incurable disease subtype known as metastatic castration-resistant prostate cancer (mCRPC). There are several molecular mechanisms that facilitate the development of mCRPC engaging androgen receptor (AR) growth axis, including AR amplification, gain of function AR mutations, and AR splice variants that are constitutively active and are a foremost factor for mCRPC development. AR-independent mechanisms with exceptionally low or absent AR expression found in cancer cells suppress ADT effectiveness and contribute to aggressive variants, including neuroendocrine differentiation. Several other AR regulatory factors such as epigenetic modification(s), and DNA damage response have been reported during post-ADT exposure and play a crucial role in mCRPC development. Therefore, targeting prostate cancer cells before their progression to mCRPC would improve patient outcomes. This special issue in "Cancer Drug Resistance" focuses on understanding the mechanism(s) and development of mCRPC resistance. This special issue also highlights the therapeutic strategies to combat against resistant subtype. This issue comprehensively reviews the mCRPC and delivers the update in the forum of mCRPC resistance development.

14.
Cancer Drug Resist ; 5(2): 459-471, 2022.
Article in English | MEDLINE | ID: mdl-35800367

ABSTRACT

Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.

16.
RSC Adv ; 12(45): 28916-28928, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320727

ABSTRACT

The West African liana Ancistrocladus abbreviatus is a rich source of structurally most diverse naphthylisoquinoline alkaloids. From its roots, a series of four novel representatives, named ancistrobrevolines A-D (14-17) have now been isolated, displaying an unprecedented heterocyclic ring system, where the usual isoquinoline entity is replaced by a ring-contracted isoindolinone part. Their constitutions were elucidated by 1D and 2D NMR and HR-ESI-MS. The absolute configurations at the chiral axis and at the stereogenic center were assigned by using experimental and computational electronic circular dichroism (ECD) investigations and a ruthenium-mediated oxidative degradation, respectively. For the biosynthetic origin of the isoindolinones from 'normal' naphthyltetrahydroisoquinolines, a hypothetic pathway is presented. It involves oxidative decarboxylation steps leading to a ring contraction by a benzilic acid rearrangement. Ancistrobrevolines A (14) and B (15) were found to display moderate cytotoxic effects (up to 72%) against MCF-7 breast and A549 lung cancer cells and to reduce the formation of spheroids (mammospheres) in the breast cancer cell line.

17.
J Biomol Struct Dyn ; 40(22): 11676-11690, 2022.
Article in English | MEDLINE | ID: mdl-34387138

ABSTRACT

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype generally associated with younger women. Due to the lack of suitable drugable targets in TNBC, the microRNAs are considered as a better hope as therapeutic agents for the management of the disease. In this study, we identified differentially expressed miRNAs (DEMs) and associated hub genes in TNBC microarray data (GSE38167, GSE60714, and GSE10833) using bioinformatics tools. The identified miRNAs and genes were validated in the TNBC cell line model (MDA-MB-231) compared with the normal breast cells (MCF-10A) using the qRT-PCR technique. False-positive DEMs were avoided by comparing the DEMs profile of TNBC and triple positive breast cancer (TPBC) cell line model (BT474) compared with the MCF-10A cells data. In addition, we studied the effect of anticancer phytochemicals on the differential expression of miRNAs and genes in MDA-MB-231 cells. Furthermore, target predictions, functional enrichment and KEGG pathway analysis, mutation and copy number alterations, and overall survival analysis of DEMs in TNBC sample was investigated using standard computational tools. The study identifies first time the association of hsa-miR-1250, has-miR-1273, and has-miR-635 with the TNBC. DEMs showed significant association with the Wnt, ErbB, PI3-Akt and cAMP signaling pathways having clinical implications in TNBC tumorigenesis. The DEMs and hub genes (HOXC6 and ACVR2B) showed survival disadvantages in TNBC patients. In summary, the identified miRNAs and hub genes show important implications in TNBC tumorigenesis and patient survival. We recommend further experimental studies on pathophysiological mechanism of the identified miRNAs and hub genes in TNBC.Communicated by Ramaswamy H. Sarma.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Line , Computational Biology , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic
18.
J Genet ; 1002021.
Article in English | MEDLINE | ID: mdl-33707363

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is at present an emerging global public health crisis. Angiotensin converting enzyme 2 (ACE2) and trans-membrane protease serine 2 (TMPRSS2) are the two major host factors that contribute to the virulence of SARS-CoV-2 and pathogenesis of coronavirus disease-19 (COVID-19). Transmission of SARS-CoV-2 from animal to human is considered a rare event that necessarily requires strong evolutionary adaptations. Till date no other human cellular receptors are identified beside ACE2 for SARS-CoV-2 entry inside the human cell. Proteolytic cleavage of viral spike (S)-protein and ACE2 by TMPRSS2 began the entire host-pathogen interaction initiated with the physical binding of ACE2 to S-protein. SARS-CoV-2 S-protein binds to ACE2 with much higher affinity and stability than that of SARS-CoVs. Molecular interactions between ACE2-S and TMPRSS2-S are crucial and preciously mediated by specific residues. Structural stability, binding affinity and level of expression of these three interacting proteins are key susceptibility factors for COVID-19. Specific protein-protein interactions (PPI) are being identified that explains uniqueness of SARS-CoV-2 infection. Amino acid substitutions due to naturally occurring genetic polymorphisms potentially alter these PPIs and poses further clinical heterogeneity of COVID-19. Repurposing of several phytochemicals and approved drugs against ACE2, TMPRSS2 and S-protein have been proposed that could inhibit PPI between them. We have also identified some novel lead phytochemicals present in Azadirachta indica and Aloe barbadensis which could be utilized for further in vitro and in vivo anti-COVID-19 drug discovery. Uncovering details of ACE2-S and TMPRSS2-S interactions would further contribute to future research on COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , Drug Design , Genetic Predisposition to Disease , Genome, Viral , Genomics/methods , Humans , Polymorphism, Single Nucleotide , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/classification , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Virus Internalization , Virus Release , Virus Replication , COVID-19 Drug Treatment
19.
3 Biotech ; 11(10): 446, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631347

ABSTRACT

The stemness property of cells allows them to sustain their lineage, differentiation, proliferation, and regeneration. MicroRNAs are small non-coding RNAs known to regulate the stemness property of cells by regulating the expression of stem cell signaling pathway proteins at mRNA level. Dysregulated miRNA expression and associated stem cell signaling pathways in normal stem cells give rise to cancer stem cells. Thus, the present study was aimed to identify the miRNAs involved in the regulation of major stem cell signaling pathways. The proteins (n = 36) involved in the signaling pathways viz., Notch, Wnt, JAK-STAT, and Hedgehog which is associated with the stemness property was taken into the consideration. The miRNAs, having binding sites for the targeted protein-encoding gene were predicted using an online tool (TargetScan) and the common miRNA among the test pathways were identified using Venn diagram analysis. A total of 22 common miRNAs (including 8 non-studied miRNAs) were identified which were subjected to target predictions, KEGG pathway, and gene ontology (GO) analysis to study their potential involvement in the stemness process. Further, we studied the clinical relevance of the non-studied miRNAs by performing the survival analysis and their expression levels in clinical breast cancer patients using the TCGA database. The identified miRNAs showed overall poor survival in breast cancer patients. The miR-6844 showed significantly high expression in various clinical subgroups of invasive breast cancer patients compared with the normal samples. The expression levels of identified miRNA(s) were validated in breast normal, luminal A, triple-negative, and stem cells in vitro models using qRT-PCR analysis. Further treatment with the phytochemical showed excellent down regulation of the lead miRNA. Overall the study first time reports the association of four miRNAs (miR-6791, miR-4419a, miR-4251 and miR-6844) with breast cancer stemness. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02994-3.

20.
Cancer Lett ; 504: 15-22, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33556545

ABSTRACT

The human genome transcribe an array of RNAs that do not encode proteins and may act as mediators in the regulation of gene expression. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs consisting of more than 200 nucleotides of RNA transcripts that play important role in tumor development. Numerous lncRNAs have been characterized as functional transcripts associated with several biological processes and pathologic stages. Although the biological function and molecular mechanisms of lncRNAs remains to be explored, recent studies demonstrate aberrant expression of several lncRNAs linked with various human cancers. The present review summarizes the current knowledge of lncRNA expression patterns and mechanisms that contribute to carcinogenesis. In particular, we focus on lncRNAs regulating androgen receptor signaling pathways in prostate and breast cancer subtype having prognostic and therapeutic implications.


Subject(s)
Breast Neoplasms/metabolism , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/physiology , Receptors, Androgen/metabolism , Signal Transduction/physiology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL