Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Genet ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890806

ABSTRACT

Ionotropic glutamate receptors (iGluRs), specifically α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), play a crucial role in orchestrating excitatory neurotransmission in the brain. AMPARs are intricate assemblies of subunits encoded by four paralogous genes: GRIA1-4. Functional studies have established that rare GRIA variants can alter AMPAR currents leading to a loss- or gain-of-function. Patients affected by rare heterozygous GRIA variants tend to have family specific variants and only few recurrent variants have been reported. We deep-phenotyped a cohort comprising eight unrelated children and adults, harboring a recurrent and well-established disease-causing GRIA1 variant (NM_001114183.1: c.1906G>A, p.(Ala636Thr)). Recurrent symptoms included motor and/or language delay, mild-severe intellectual disability, behavioral and psychiatric comorbidities, hypotonia and epilepsy. We also report challenges in social skills, autonomy, living and work situation, and occupational levels. Furthermore, we compared their clinical manifestations in relation to those documented in patients presenting with rare heterozygous variants at analogous positions within paralogous genes. This study provides unprecedented details on the neurodevelopmental outcomes, cognitive abilities, seizure profiles, and behavioral abnormalities associated with p.(Ala636Thr) refining and broadening the clinical phenotype.

2.
Am J Hum Genet ; 104(3): 530-541, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827496

ABSTRACT

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autistic Disorder/etiology , Intellectual Disability/etiology , Mutation, Missense , Nuclear Proteins/genetics , Adolescent , Adult , Amino Acid Sequence , Autistic Disorder/metabolism , Autistic Disorder/pathology , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Prognosis , Sequence Homology , Syndrome , Young Adult
3.
Genet Med ; 24(11): 2296-2307, 2022 11.
Article in English | MEDLINE | ID: mdl-36066546

ABSTRACT

PURPOSE: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. METHODS: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). RESULTS: The diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. CONCLUSION: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Developmental Disabilities/genetics , Genetic Testing/methods , Microarray Analysis , Neurodevelopmental Disorders/genetics , Fragile X Mental Retardation Protein/genetics
4.
Int J Mol Sci ; 23(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36012658

ABSTRACT

Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient's cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient's cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations.


Subject(s)
Autistic Disorder , Epilepsy , Osteoporosis , Protein Serine-Threonine Kinases , Autistic Disorder/genetics , Chromosome Mapping , Epilepsy/genetics , Humans , Osteoporosis/genetics , Protein Serine-Threonine Kinases/genetics , Translocation, Genetic
5.
Neurogenetics ; 22(1): 71-79, 2021 03.
Article in English | MEDLINE | ID: mdl-33486633

ABSTRACT

Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.


Subject(s)
Calpain/genetics , Intellectual Disability/genetics , Muscle Spasticity/genetics , Mutation/genetics , Optic Atrophy/genetics , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Adult , Age of Onset , Cerebellar Ataxia/genetics , Child , Female , Genetic Association Studies , Humans , Intellectual Disability/diagnosis , Male , Muscle Spasticity/diagnosis , Optic Atrophy/diagnosis , Pedigree , Phenotype , Spinocerebellar Ataxias/diagnosis , Young Adult
6.
Hum Genet ; 140(12): 1709-1731, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34652576

ABSTRACT

Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.


Subject(s)
Facial Paralysis/genetics , Fibrosis/genetics , Mutation , Ophthalmoplegia/genetics , Peripheral Nervous System Diseases/genetics , Tubulin/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Amino Acid Substitution , Arginine , Child , Child, Preschool , Facial Paralysis/diagnosis , Facial Paralysis/physiopathology , Female , Fibrosis/diagnosis , Fibrosis/physiopathology , Histidine , Humans , Infant , Male , Ophthalmoplegia/diagnosis , Ophthalmoplegia/physiopathology , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/physiopathology , Syndrome , Young Adult
7.
Genet Med ; 23(5): 888-899, 2021 05.
Article in English | MEDLINE | ID: mdl-33597769

ABSTRACT

PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants. METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing. RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies. CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Intellectual Disability , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Brain , Disks Large Homolog 4 Protein/genetics , Humans , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype
8.
J Med Genet ; 57(10): 717-724, 2020 10.
Article in English | MEDLINE | ID: mdl-32152250

ABSTRACT

BACKGROUND: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. TNRC6B encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described. METHODS: Clinical and molecular characterisation was performed on 17 patients with TNRC6B variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation. RESULTS: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous TNRC6B variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1). CONCLUSIONS: Variants in TNRC6B cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. TNRC6B should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Autistic Disorder/genetics , Genetic Predisposition to Disease , RNA-Binding Proteins/genetics , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/pathology , Autistic Disorder/complications , Autistic Disorder/pathology , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Heterozygote , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Intellectual Disability/pathology , Language Development Disorders/genetics , Language Development Disorders/pathology , Male , Motor Skills Disorders/genetics , Motor Skills Disorders/pathology , Mutation/genetics , Phenotype , Exome Sequencing
9.
Am J Hum Genet ; 100(4): 650-658, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343630

ABSTRACT

Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.


Subject(s)
Exons , Intellectual Disability/genetics , Mutation , Protein Phosphatase 2C/genetics , Adolescent , Cell Cycle , Child , Child, Preschool , Humans , Intellectual Disability/pathology , Young Adult
10.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26942287

ABSTRACT

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Transposases/genetics , Adolescent , Adult , Animals , Autism Spectrum Disorder/diagnosis , Child , Child, Preschool , Cohort Studies , Down-Regulation , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Exome , Female , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/diagnosis , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Linear Models , Male , Microcephaly/diagnosis , Microcephaly/genetics , Mutation , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Circulation ; 136(11): 1037-1048, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28687708

ABSTRACT

BACKGROUND: Most arteriovenous malformations (AVMs) are localized and occur sporadically. However, they also can be multifocal in autosomal-dominant disorders, such as hereditary hemorrhagic telangiectasia and capillary malformation (CM)-AVM. Previously, we identified RASA1 mutations in 50% of patients with CM-AVM. Herein we studied non-RASA1 patients to further elucidate the pathogenicity of CMs and AVMs. METHODS: We conducted a genome-wide linkage study on a CM-AVM family. Whole-exome sequencing was also performed on 9 unrelated CM-AVM families. We identified a candidate gene and screened it in a large series of patients. The influence of several missense variants on protein function was also studied in vitro. RESULTS: We found evidence for linkage in 2 loci. Whole-exome sequencing data unraveled 4 distinct damaging variants in EPHB4 in 5 families that cosegregated with CM-AVM. Overall, screening of EPHB4 detected 47 distinct mutations in 54 index patients: 27 led to a premature stop codon or splice-site alteration, suggesting loss of function. The other 20 are nonsynonymous variants that result in amino acid substitutions. In vitro expression of several mutations confirmed loss of function of EPHB4. The clinical features included multifocal CMs, telangiectasias, and AVMs. CONCLUSIONS: We found EPHB4 mutations in patients with multifocal CMs associated with AVMs. The phenotype, CM-AVM2, mimics RASA1-related CM-AVM1 and also hereditary hemorrhagic telangiectasia. RASA1-encoded p120RASGAP is a direct effector of EPHB4. Our data highlight the pathogenetic importance of this interaction and indicts EPHB4-RAS-ERK signaling pathway as a major cause for AVMs.


Subject(s)
Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Capillaries/abnormalities , Germ-Line Mutation/genetics , MAP Kinase Signaling System/physiology , Port-Wine Stain/diagnosis , Port-Wine Stain/genetics , Receptor, EphB4/genetics , p120 GTPase Activating Protein/genetics , Databases, Genetic , Female , Genome-Wide Association Study/methods , Humans , Male , Pedigree
12.
Clin Genet ; 94(6): 528-537, 2018 12.
Article in English | MEDLINE | ID: mdl-30221345

ABSTRACT

We have investigated 20 consanguineous families with multiple children affected by rare disorders. Detailed clinical examinations, exome sequencing of affected as well as unaffected family members and further validation of likely pathogenic variants were performed. In 16/20 families, we identified pathogenic variants in autosomal recessive disease genes (ALMS1, PIGT, FLVCR2, TFG, CYP7B1, ALG14, EXOSC3, MEGF10, ASAH1, WDR62, ASPM, PNPO, ERCC5, KIAA1109, RIPK4, MAN1B1). A number of these genes have only rarely been reported previously and our findings thus confirm them as disease genes, further delineate the associated phenotypes and expand the mutation spectrum with reports of novel variants. We highlight the findings in two affected siblings with splice altering variants in ALG14 and propose a new clinical entity, which includes severe intellectual disability, epilepsy, behavioral problems and mild dysmorphic features, caused by biallelic variants in ALG14.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , N-Acetylglucosaminyltransferases/genetics , Phenotype , Alleles , Comparative Genomic Hybridization , Computational Biology/methods , Consanguinity , Facies , Female , Genetic Association Studies/methods , Humans , Male , Pedigree , Exome Sequencing
13.
Brain ; 140(11): 2838-2850, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088354

ABSTRACT

The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection.


Subject(s)
Brain/pathology , Mutation, Missense , Myasthenic Syndromes, Congenital/genetics , Neurodevelopmental Disorders/genetics , Symporters/genetics , Animals , Animals, Genetically Modified , Atrophy , Axons/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Child, Preschool , Female , HEK293 Cells , Homozygote , Humans , Infant , Male , Membrane Transport Proteins/genetics , Pedigree , Presynaptic Terminals/metabolism , Protein Transport , Symporters/metabolism
14.
Adv Exp Med Biol ; 1031: 39-54, 2017.
Article in English | MEDLINE | ID: mdl-29214565

ABSTRACT

Rare disorders constitute a large and heterogeneous group of diagnoses of which many cause chronic disabilities with significant impact on the lives of affected individuals and their families as well as on the health-care system. Each individual disorder is rare, but when considered as a group, rare disorders are common with a total prevalence of approximately 6-8%. The clinical presentation of these disorders includes a broad diversity of symptoms and signs, often involving the nervous system and resulting in symptoms such as intellectual disability, neuropsychiatric disorders, epilepsy and motor dysfunction. The methods for establishing an etiological diagnosis in patients with rare disorders have improved dramatically during recent years. With the introduction of genomic screening methods, it has been shown that the cause is genetic in the majority of the patients and many will receive an etiological diagnosis in a clinical setting. However, there are a lot of challenges in diagnosing these disorders and despite recent years' advances, a large number of patients with rare disorders still go without an etiological diagnosis. In this chapter we will review the etiology of rare disorders with focus on intellectual disability and what has been learned from massive parallel sequencing studies in deciphering the genetic basis. Furthermore, we will discuss challenges in the etiological diagnostics of these disorders including issues that regard interpretation of the numerous genetic variants detected by genomic screening methods and challenges in the translation of massive parallel sequencing technologies into clinical practice.


Subject(s)
Genetic Testing/methods , Intellectual Disability/diagnosis , Persons with Mental Disabilities/psychology , Rare Diseases/diagnosis , Genetic Predisposition to Disease , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Intellectual Disability/psychology , Phenotype , Predictive Value of Tests , Rare Diseases/epidemiology , Rare Diseases/genetics , Rare Diseases/psychology , Risk Factors
15.
Am J Med Genet A ; 164A(12): 3083-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25251319

ABSTRACT

Previous studies have shown that genetic aberrations involving the special AT-rich sequence-binding protein 2 (SATB2) gene result in a variable phenotype of syndromic intellectual disability. Although only a small number of patients have been described, there is already considerable variation in regard to the underlying molecular mechanism spanning from structural variation to point mutations. We here describe a male patient with intellectual disability, speech and language impairment, cleft palate, malformed teeth, and oligodontia. Array CGH analysis identified a small intragenic duplication in the SATB2 gene that included three coding exons. The result was confirmed by multiplex ligation-dependent probe amplification and low coverage whole genome mate pair sequencing. WGS breakpoint analysis directly confirmed the duplication as intragenic. This is the first reported patient with an intragenic duplication in SATB2 in combination with a phenotype that is highly similar to previously described patients with small deletions or point mutations of the same gene. Our findings expand the spectra of SATB2 mutations and confirm the presence of a distinct SATB2-phenotype with severe ID and speech impairment, cleft palate and/or high arched palate, and abnormalities of the teeth. For patients that present with this clinical picture, a high-resolution exon targeted array CGH and/or WGS, in addition to sequencing of SATB2, should be considered.


Subject(s)
Abnormalities, Multiple/genetics , Gene Duplication/genetics , Intellectual Disability/genetics , Matrix Attachment Region Binding Proteins/genetics , Phenotype , Transcription Factors/genetics , Comparative Genomic Hybridization , DNA Primers/genetics , Humans , Male , Syndrome , Young Adult
16.
J Med Genet ; 50(8): 521-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23636107

ABSTRACT

PURPOSE: To delineate the molecular basis for a novel autosomal recessive syndrome, characterised by distinct facial features, intellectual disability, hypotonia and seizures, in combination with abnormal skeletal, endocrine, and ophthalmologic findings. METHODS: We examined four patients from a consanguineous kindred with a strikingly similar phenotype, by using whole exome sequencing (WES). Functional validation of the initial results were performed by flow cytometry determining surface expression of glycosylphosphatidylinositol (GPI) and GPI anchored proteins and, in addition, by in vivo assays on zebrafish embryos. RESULTS: The results from WES identified a homozygous mutation, c.547A>C (p.Thr183Pro), in PIGT; Sanger sequencing of additional family members confirmed segregation with the disease. PIGT encodes phosphatidylinositol-glycan biosynthesis class T (PIG-T) protein, which is a subunit of the transamidase complex that catalyses the attachment of proteins to GPI. By flow cytometry, we found that granulocytes from the patients had reduced levels of the GPI anchored protein CD16b, supporting pathogenicity of the mutation. Further functional in vivo validation via morpholino mediated knockdown of the PIGT ortholog in zebrafish (pigt) showed that, unlike human wild-type PIGT mRNA, the p.Thr183Pro encoding mRNA failed to rescue gastrulation defects induced by the suppression of pigt. CONCLUSIONS: We identified mutations in PIGT as the cause of a novel autosomal recessive intellectual disability syndrome. Our results demonstrate a new pathogenic mechanism in the GPI anchor pathway and expand the clinical spectrum of disorders belonging to the group of GPI anchor deficiencies.


Subject(s)
Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/genetics , Hemoglobinuria, Paroxysmal/genetics , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Seizures/genetics , Animals , Animals, Genetically Modified , Child, Preschool , Consanguinity , Embryo, Nonmammalian/metabolism , Female , Flow Cytometry , Homozygote , Humans , Mutation , Pedigree , Syndrome , Zebrafish/genetics , Zebrafish/metabolism
17.
Neurol Genet ; 9(6): e200100, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38035175

ABSTRACT

Objectives: Biallelic variants in XPNPEP3 are associated with a rare mitochondrial syndrome characterized by nephronophthisis leading to kidney failure, essential tremor, hearing loss, seizures, and intellectual disability. Only 2 publications on this condition are available. We report a man with a complex ataxia syndrome, hearing loss, and kidney failure associated with a new biallelic variant in XPNPEP3. Methods: Clinical evaluation, neuroimaging studies, a kidney biopsy, and whole genome sequencing (WGS) were applied. Since the phenotype was compatible with a mitochondrial disease, a muscle biopsy with morphological and mitochondrial biochemical investigations was performed. Results: Axial ataxia, cerebellar atrophy, hearing loss, myopathy, ptosis, supranuclear palsy, and kidney failure because of nephronophthisis were the prominent features in this case. WGS revealed the novel biallelic variant c.766C>T (p.Gln256*) in XPNPEP3. A muscle biopsy revealed COX negative fibers, a few ragged red fibers, and ultrastructural mitochondrial changes. Enzyme activity in respiratory chain complex IV was reduced in muscle and fibroblasts. Discussion: This is the first report of a slowly progressive cerebellar ataxia associated with a novel biallelic variant in XPNPEP3. Abnormalities typical for mitochondrial disease and the slow progression of kidney disease are also striking. Our report expands the spectrum of XPNPEP3-related diseases.

18.
Front Neurol ; 14: 1170005, 2023.
Article in English | MEDLINE | ID: mdl-37273706

ABSTRACT

Introduction: Neuromuscular disorders (NMDs) have a heterogeneous etiology. A genetic diagnosis is key to personalized healthcare and access to targeted treatment for the affected individuals. Methods: In this study, 861 patients with NMDs were analyzed with genome sequencing and comprehensive variant calling including single nucleotide variants, small insertions/deletions (SNVs/INDELs), and structural variants (SVs) in a panel of 895 NMD genes, as well as short tandem repeat expansions (STRs) at 28 loci. In addition, for unsolved cases with an unspecific clinical presentation, the analysis of a panel with OMIM disease genes was added. Results: In the cohort, 27% (232/861) of the patients harbored pathogenic variants, of which STRs and SVs accounted for one-third of the patients (71/232). The variants were found in 107 different NMD genes. Furthermore, 18 pediatric patients harbored pathogenic variants in non-NMD genes. Discussion: Our results highlight that for children with unspecific hypotonia, a genome-wide analysis rather than a disease-based gene panel should be considered as a diagnostic approach. More importantly, our results clearly show that it is crucial to include STR- and SV-analyses in the diagnostics of patients with neuromuscular disorders.

19.
Res Sq ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37841849

ABSTRACT

Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H (SMARCA5) or SNF2L (SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum.

20.
Am J Med Genet A ; 158A(5): 1111-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22495764

ABSTRACT

We have studied a family with repeated transmission of mosaicism for a supernumerary marker chromosome (SMC), giving rise to varying symptoms of the cat eye syndrome (CES) in the offspring. The frequency of the SMC was investigated using FISH with probes from the CES critical region on lymphocytes as well as buccal cells. The same probes were used to study the frequency of the SMC in spermatozoa from the father. The SMC was characterized in detail using array-CGH and was found to correspond to a symmetrical cat eye SMC type I, with two extra copies of the most proximal part of 22q11, not extending into the classical 22q11.2 deletion region. Mosaicism for the SMC was detected in 4 out of 7 family members, the father and all his three children. The degree of mosaicism varied greatly between individuals as well as between tissues, with twice as many cells with the SMC in epithelial cells compared to blood. The highest frequency (almost 50%) was found in spermatozoa from the father. There was a direct correlation between the degree of mosaicism and the symptoms, varying from no obvious symptoms to classical CES. The study confirms the occurrence of direct transmission of SMC-mosaicism in CES. The results indicate that examination of parental epithelial cells should be preferred compared to blood cells in order to exclude a recurrence risk in parents of a child with CES. Interphase FISH analysis of spermatozoa is the most sensitive method to exclude paternal germ line mosaicsm.


Subject(s)
Chromosome Disorders/genetics , Genetic Markers , Mosaicism , Aneuploidy , Child , Chromosomes, Human, Pair 22/genetics , Eye Abnormalities , Family , Humans , In Situ Hybridization, Fluorescence , Male , Phenotype , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL