Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mikrochim Acta ; 187(1): 52, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848717

ABSTRACT

An electrochemical study was performed on the behavior of Ti3C2Tx MXenes prepared by using either HF (MXene1) or LiF/HCl as etchants (MXene2). The use of two redox probes indicates the presence of a higher negative charge density on MXene2 in comparison to MXene1. The characterization of two nanomaterials shows that titanium and fluoride are present higher by one order of magnitude at the interface of MXene2, compared to MXene1. The high Ti and F content is accompanied by a 82-fold larger (249 µA·cm-2 vs. 5.64 µA·cm-2) anodic peak at the peak potential near 0.4 V (vs. Ag/AgCl). Similarly, the peak current on MXene2 is 317-fold higher for the oxygen reduction at pH 7.0 (at a voltage of -0.84 V) and 215-fold higher for the reduction of H2O2 at -0.89 V, when compared to MXene1. Graphical abstractDifference in electrochemical behavior of MXene prepared by HF (MXene1) and LiF/HCl (MXene2) as etchants.

2.
Sensors (Basel) ; 19(24)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31818011

ABSTRACT

The study describes development of a glycan biosensor for detection of a tumor-associated antibody. The glycan biosensor is built on an electrochemically activated/oxidized graphene screen-printed electrode (GSPE). Oxygen functionalities were subsequently applied for covalent immobilization of human serum albumin (HSA) as a natural nanoscaffold for covalent immobilization of Thomsen-nouvelle (Tn) antigen (GalNAc-O-Ser/Thr) to be fully available for affinity interaction with its analyte-a tumor-associated antibody. The step by step building process of glycan biosensor development was comprehensively characterized using a battery of techniques (scanning electron microscopy, atomic force microscopy, contact angle measurements, secondary ion mass spectrometry, surface plasmon resonance, Raman and energy-dispersive X-ray spectroscopy). Results suggest that electrochemical oxidation of graphene SPE preferentially oxidizes only the surface of graphene flakes within the graphene SPE. Optimization studies revealed the following optimal parameters: activation potential of +1.5 V vs. Ag/AgCl/3 M KCl, activation time of 60 s and concentration of HSA of 0.1 g L-1. Finally, the glycan biosensor was built up able to selectively and sensitively detect its analyte down to low aM concentration. The binding preference of the glycan biosensor was in an agreement with independent surface plasmon resonance analysis.


Subject(s)
Antibodies, Neoplasm/blood , Antigens, Tumor-Associated, Carbohydrate/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Antibodies, Neoplasm/immunology , Antigens, Tumor-Associated, Carbohydrate/immunology , Electrochemical Techniques , Electrodes , Humans , Limit of Detection , Serum Albumin/chemistry
3.
Langmuir ; 33(11): 2709-2716, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28248511

ABSTRACT

The main aim of the study was to optimize the interfacial presentation of a small antigen-a Tn antigen (N-acetylgalactosamine)-for binding to its analyte anti-Tn antibody. Three different methods for the interfacial display of a small glycan are compared here, including two methods based on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding with better kinetics of binding (t50% = 137 s, t50% = the time needed to attain 50% of a steady-state signal) compared to the 2D biosensor configuration with t50% = 354 s. The 3D glycan biosensor was finally applied for the analysis of a human serum sample spiked with an analyte.


Subject(s)
Antibodies/chemistry , Biosensing Techniques , Polysaccharides/chemistry , Kinetics , Microscopy, Atomic Force
4.
Front Biosci (Landmark Ed) ; 29(1): 32, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38287814

ABSTRACT

BACKGROUND: Aberrant glycosylation is a hallmark of cancer and thereby has an excellent potential for the discovery of novel biomarkers. Impairments in the glycan composition of lipoproteins impact their functional properties and can be associated with various diseases, including cancer. This research is still in its infancy; however, it can lead to the development of new diagnostic and disease stratification approaches as well as therapeutic strategies. Therefore, we aimed to evaluate anomalies in O-glycosylation of apolipoprotein C-III (apoC-III) in colorectal carcinoma (CRC) patients' sera, in comparison with sera from healthy individuals, and assess the disparities of O-glycoforms on apoC-III in CRC. METHODS: The choice of patients (n = 42) was based on the same tumor type (adenocarcinoma) and tumor size (T3), without or with inconsiderable lymph node infiltration. Patients with comorbidities were excluded from the study. The control healthy individuals (n = 40) were age- and sex-matched with patients. We used an approach based on the MALDI-TOF MS in linear positive ion mode, allowing simple analysis of O-glycosylation on intact apoC-III molecules in the serum samples directly, without the need for specific protein isolation. This approach enables relatively simple and high-throughput analysis. RESULTS: In CRC patients' sera samples, we observed significantly elevated apoC-III sialylation. Fully sialylated (disialylated) O-glycans had 1.26 times higher relative abundance in CRC samples compared to controls with a p-value of Mann-Whitney U test of 0.0021. CONCLUSIONS: We found altered O-glycosylation of apoC-III in the serum of CRC patients. However, it can be non-specific as it may be associated with another process such as ongoing inflammation. Therefore, to establish it as a potential novel non-invasive biomarker for CRC in suspected patients, further studies interrogating the changes in apoC-III O-glycosylation and the robustness of this biomarker need to be performed and evaluated.


Subject(s)
Colorectal Neoplasms , Polysaccharides , Humans , Apolipoprotein C-III , Glycosylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Biomarkers , Colorectal Neoplasms/diagnosis
5.
Biomedicines ; 11(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36831116

ABSTRACT

Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by a defect in the process of protein glycosylation. In this work, we present a comprehensive glycoprofile analysis of a male patient with a novel missense variant in the SLC35A2 gene, coding a galactose transporter that translocates UDP-galactose from the cytosol to the lumen of the endoplasmic reticulum and Golgi apparatus. Isoelectric focusing of serum transferrin, which resulted in a CDG type II pattern, was followed by structural analysis of transferrin and serum N-glycans, as well as the analysis of apolipoprotein CIII O-glycans by mass spectrometry. An abnormal serum N-glycoprofile with significantly increased levels of agalactosylated (Hex3HexNAc4-5 and Hex3HexNAc5Fuc1) and monogalactosylated (Hex4HexNAc4 ± NeuAc1) N-glycans was observed. Additionally, whole exome sequencing and Sanger sequencing revealed de novo hemizygous c.461T > C (p.Leu154Pro) mutation in the SLC35A2 gene. Based on the combination of biochemical, analytical, and genomic approaches, the set of distinctive N-glycan biomarkers was characterized. Potentially, the set of identified aberrant N-glycans can be specific for other variants causing SLC35A2-CDG and can distinguish this disorder from the other CDGs or other defects in the galactose metabolism.

6.
Anal Chim Acta ; 1195: 339444, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35090648

ABSTRACT

The development of a novel SUspension Magnetic-Bead-based Assay (SUMBA) for the detection of antibodies against aberrant glycans (AGA) as potential cancer biomarkers is presented here. The SUMBA method was extensively optimised by choosing proper commercially available AGA able to specifically, and with high affinity, recognise aberrant glycans, which were attached to the protein backbone working as a molecular scaffold (a glycoconjugate). The whole SUMBA was optimised using several analytical techniques such as Surface Plasmon Resonance and Energy Dispersive X-ray Spectroscopy. Additionally, the SUMBA method was extensively optimised for signal enhancement. With all steps optimised, we were able to detect AGA ultrasensitively with a limit of detection of 0.45 pM. Moreover, AGA could be detected in serum samples with a recovery index in the range of 98%-104%.


Subject(s)
Biomarkers, Tumor , Neoplasms , Antibodies , Humans , Immunomagnetic Separation , Magnetic Fields , Neoplasms/diagnosis
7.
Nanomaterials (Basel) ; 10(7)2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32707669

ABSTRACT

This review paper comprehensively summarizes advances made in the design of glycan nanobiosensors using diverse forms of nanomaterials. In particular, the paper covers the application of gold nanoparticles, quantum dots, magnetic nanoparticles, carbon nanoparticles, hybrid types of nanoparticles, proteins as nanoscaffolds and various nanoscale-based approaches to designing such nanoscale probes. The article covers innovative immobilization strategies for the conjugation of glycans on nanoparticles. Summaries of the detection schemes applied, the analytes detected and the key operational characteristics of such nanobiosensors are provided in the form of tables for each particular type of nanomaterial.

8.
Expert Rev Mol Diagn ; 19(12): 1057-1068, 2019 12.
Article in English | MEDLINE | ID: mdl-31665948

ABSTRACT

Introduction: The review provides a comprehensive overview about applicability of serological detection of autoantibodies against aberrant glycans as cancer biomarkers.Areas covered: Clinical usefulness of autoantibodies as cancer biomarkers is discussed for seven types of cancers with sensitivity and specificity of such biomarkers provided. Moreover, an option of using serological antibodies against a non-natural form of sialic acid - N-glycolylneuraminic acid (Neu5Gc), which is taken into our bodies together with red meat, as a potential cancer biomarker is discussed shortly as well.Expert opinion: In the final part of the review, we discuss what measures need to be applied for selective implementation of autoantibody assays into a clinical practice. Moreover, we discuss key challenges ahead for reliable and robust detection of autoantibodies against aberrant glycans as biomarkers for disease diagnostics and for stratification of cancer patients.


Subject(s)
Autoantibodies/blood , Biomarkers, Tumor/blood , Neoplasms/blood , Polysaccharides/immunology , Autoantibodies/immunology , Biomarkers, Tumor/immunology , Humans , Neoplasms/diagnosis , Neoplasms/immunology , Polysaccharides/chemistry , Serologic Tests/methods , Serologic Tests/standards
SELECTION OF CITATIONS
SEARCH DETAIL