Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
BMC Biol ; 20(1): 270, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36464676

ABSTRACT

BACKGROUND: Recently, bacterial extracellular vesicles (EVs) have been considered to play crucial roles in various biological processes and have great potential for developing cancer therapeutics and biomedicine. However, studies on bacterial EVs have mainly focused on outer membrane vesicles released from gram-negative bacteria since the outermost peptidoglycan layer in gram-positive bacteria is thought to preclude the release of EVs as a physical barrier. RESULTS: Here, we examined the ultrastructural organization of the EV produced by gram-positive bacteria using super-resolution stochastic optical reconstruction microscopy (STORM) at the nanoscale, which has not been resolved using conventional microscopy. Based on the super-resolution images of EVs, we propose three major mechanisms of EV biogenesis, i.e., membrane blebbing (mechanisms 1 and 2) or explosive cell lysis (mechanism 3), which are different from the mechanisms in gram-negative bacteria, despite some similarities. CONCLUSIONS: These findings highlight the significant role of cell wall degradation in regulating various mechanisms of EV biogenesis and call for a reassessment of previously unresolved EV biogenesis in gram-positive bacteria.


Subject(s)
Biological Phenomena , Extracellular Vesicles , Microscopy , Gram-Positive Bacteria , Cell Death
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674888

ABSTRACT

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.


Subject(s)
Golgi Apparatus , Biological Transport , Diffusion , Golgi Apparatus/metabolism , Protein Transport
3.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35408951

ABSTRACT

The Golgi complex is the central station of the secretory pathway. Knowledge about the mechanisms of intra-Golgi transport is inconsistent. Here, we compared the explanatory power of the cisterna maturation-progression model and the kiss-and-run model. During intra-Golgi transport, conventional cargoes undergo concentration and form cisternal distensions or distinct membrane domains that contain only one membrane cargo. These domains and distension are separated from the rest of the Golgi cisternae by rows of pores. After the arrival of any membrane cargo or a large cargo aggregate at the Golgi complex, the cis-Golgi SNAREs become enriched within the membrane of cargo-containing domains and then replaced by the trans-Golgi SNAREs. During the passage of these domains, the number of cisternal pores decreases. Restoration of the cisternal pores is COPI-dependent. Our observations are more in line with the kiss-and-run model.


Subject(s)
Golgi Apparatus , SNARE Proteins , Biological Transport , Golgi Apparatus/metabolism , SNARE Proteins/metabolism
4.
Am J Hum Genet ; 96(3): 432-9, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25683121

ABSTRACT

As a result of a whole-exome sequencing study, we report three mutant alleles in SEC24D, a gene encoding a component of the COPII complex involved in protein export from the ER: the truncating mutation c.613C>T (p.Gln205(∗)) and the missense mutations c.3044C>T (p.Ser1015Phe, located in a cargo-binding pocket) and c.2933A>C (p.Gln978Pro, located in the gelsolin-like domain). Three individuals from two families affected by a similar skeletal phenotype were each compound heterozygous for two of these mutant alleles, with c.3044C>T being embedded in a 14 Mb founder haplotype shared by all three. The affected individuals were a 7-year-old boy with a phenotype most closely resembling Cole-Carpenter syndrome and two fetuses initially suspected to have a severe type of osteogenesis imperfecta. All three displayed a severely disturbed ossification of the skull and multiple fractures with prenatal onset. The 7-year-old boy had short stature and craniofacial malformations including macrocephaly, midface hypoplasia, micrognathia, frontal bossing, and down-slanting palpebral fissures. Electron and immunofluorescence microscopy of skin fibroblasts of this individual revealed that ER export of procollagen was inefficient and that ER tubules were dilated, faithfully reproducing the cellular phenotype of individuals with cranio-lentico-sutural dysplasia (CLSD). CLSD is caused by SEC23A mutations and displays a largely overlapping craniofacial phenotype, but it is not characterized by generalized bone fragility and presented with cataracts in the original family described. The cellular and morphological phenotypes we report are in concordance with the phenotypes described for the Sec24d-deficient fish mutants vbi (medaka) and bulldog (zebrafish).


Subject(s)
Craniosynostoses/genetics , Eye Abnormalities/genetics , Hydrocephalus/genetics , Osteogenesis Imperfecta/genetics , Vesicular Transport Proteins/genetics , Alleles , Animals , Bone and Bones/pathology , Child , Endoplasmic Reticulum/metabolism , Female , Heterozygote , Humans , Male , Mutation, Missense , Pedigree , Phenotype , Protein Conformation , Sequence Analysis, DNA , Vesicular Transport Proteins/metabolism , Zebrafish/genetics
5.
Biochem Biophys Res Commun ; 497(1): 226-232, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29427663

ABSTRACT

We found that formyl peptide receptor (FPR) 1 and FPR3 were expressed intracellularly and/or the nucleus of naïve CD4 T cell. Activation of naïve CD4 T cells with synthetic intracellular agonists dTAT-WKYMVm and CTP-WKYMVm for FPR members stimulated CD4 T cell migration via pertussis toxin-sensitive manner. Knockdown of FPR1, but not knockdown of FPR3, blocked dTAT-WKYMVm-induced naïve CD4 T cell migration. Stimulation of naïve CD4 T cells with dTAT-WKYMVm elicited the activation of ERK, p38 MAPK, and Akt. Activation of CD4 T cells with anti-CD3 and anti-CD28 antibodies caused surface expression of FPR1 and FPR3, but not FPR2. CD4 T cells isolated from sepsis patients expressed the three members of FPR family on their cell surface. Taken together, our results suggest that intracellular FPR in naïve CD4 T cells and surface FPRs in activated CD4 T cells might regulate immune responses by regulating CD4 T cell activity.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/physiology , Cell Movement/physiology , Receptors, Formyl Peptide/metabolism , Cells, Cultured , Humans
6.
PLoS Genet ; 11(8): e1005480, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26305787

ABSTRACT

The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Interneurons/physiology , LIM-Homeodomain Proteins/physiology , Motor Neurons/physiology , Sensory Receptor Cells/physiology , Transcription Factors/physiology , Animals , Base Sequence , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Cell Differentiation , Cell Line, Tumor , Cholinergic Neurons/metabolism , Consensus Sequence , Gene Expression Regulation, Developmental , Humans , Nerve Tissue Proteins/physiology , Stress, Physiological , Transcriptome
7.
Kidney Int ; 91(4): 880-895, 2017 04.
Article in English | MEDLINE | ID: mdl-28040265

ABSTRACT

Clinical prescription of cisplatin, one of the most widely used chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Since details of the underlying mechanisms are not fully understood, we investigated the role of pyruvate dehydrogenase kinase (PDK) in cisplatin-induced acute kidney injury. Among the PDK isoforms, PDK4 mRNA and protein levels were markedly increased in the kidneys of mice treated with cisplatin, and c-Jun N-terminal kinase activation was involved in cisplatin-induced renal PDK4 expression. Treatment with the PDK inhibitor sodium dichloroacetate (DCA) or genetic knockout of PDK4 attenuated the signs of cisplatin-induced acute kidney injury, including apoptotic morphology of the kidney tubules along with numbers of TUNEL-positive cells, cleaved caspase-3, and renal tubular injury markers. Cisplatin-induced suppression of the mitochondrial membrane potential, oxygen consumption rate, expression of electron transport chain components, cytochrome c oxidase activity, and disruption of mitochondrial morphology were noticeably improved in the kidneys of DCA-treated or PDK4 knockout mice. Additionally, levels of the oxidative stress marker 4-hydroxynonenal and mitochondrial reactive oxygen species were attenuated, whereas superoxide dismutase 2 and catalase expression and glutathione synthetase and glutathione levels were recovered in DCA-treated or PDK4 knockout mice. Interestingly, lipid accumulation was considerably attenuated in DCA-treated or PDK4 knockout mice via recovered expression of peroxisome proliferator-activated receptor-α and coactivator PGC-1α, which was accompanied by recovery of mitochondrial biogenesis. Thus, PDK4 mediates cisplatin-induced acute kidney injury, suggesting that PDK4 might be a therapeutic target for attenuating cisplatin-induced acute kidney injury.


Subject(s)
Acute Kidney Injury/prevention & control , Cisplatin , Kidney Tubules/enzymology , Protein Serine-Threonine Kinases/deficiency , Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Apoptosis , Caspase 3/metabolism , Cells, Cultured , Disease Models, Animal , Energy Metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic , Genetic Predisposition to Disease , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney Tubules/drug effects , Kidney Tubules/ultrastructure , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology , Mitochondria/pathology , Organelle Biogenesis , Oxidative Stress , Phenotype , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
8.
Nano Lett ; 16(5): 2994-3000, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27014918

ABSTRACT

Many animal species employ highly conspicuous traits as courtship signals for successful mating. Fireflies utilize their bioluminescent light as visual courtship signals. In addition to efficient bioluminescent light emission, the structural components of the firefly lantern also contribute to the enhancement of conspicuous optical signaling. Recently, these firefly lantern ultrastructures have attracted much interest and inspired highly efficient light management approaches. Here we report on the unique optical function of the hierarchical ultrastructures found in a firefly (Pyrocoelia rufa) and their biological inspiration of highly efficient organic light-emitting diode (OLED) applications. The hierarchical structures are comprised of longitudinal nanostructures and asymmetric microstructures, which were successfully replicated using geometry-guided resist reflow, replica molding, and polydimethylsiloxane (PDMS) oxidation. The external quantum efficiency (EQE) of the bioinspired OLEDs was enhanced by up to 61%. The bioinspired OLEDs clearly showed side-enhanced super-Lambertian emission with a wide-viewing angle. The highly efficient light extraction and wide-angle illumination suggest how the hierarchical structures likely improve the recognition of firefly optical courtship signals over a wide-angle range. At the same time, the biologically inspired designs provide a new paradigm for designing functional optical surfaces for lighting or display applications.

9.
Proc Natl Acad Sci U S A ; 110(15): 5987-92, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530209

ABSTRACT

The initiation of primary cilium assembly entails the docking of ciliary vesicles presumably derived from the Golgi complex to the distal end of the mother centriole. Distal appendages, which anchor the mother centriole to the plasma membrane, are thought to be involved in the docking process. However, little is known about the molecular players and mechanisms that mediate the vesicle-centriole association. Here we report that coiled-coil domain containing 41 (CCDC41) is required for the docking of ciliary vesicles. CCDC41 specifically localizes to the distal end of the mother centriole and interacts with centrosomal protein 164 (Cep164), a distal appendage component. In addition, a pool of CCDC41 colocalizes with intraflagellar transport protein 20 (IFT20) subunit of the intraflagellar transport particle at the Golgi complex. Remarkably, knockdown of CCDC41 inhibits the recruitment of IFT20 to the centrosome. Moreover, depletion of CCDC41 or IFT20 inhibits ciliogenesis at the ciliary vesicle docking step, whereas intraflagellar transport protein 88 (IFT88) depletion interferes with later cilium elongation steps. Our results suggest that CCDC41 collaborates with IFT20 to support the vesicle-centriole association at the onset of ciliogenesis.


Subject(s)
Centrioles/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Centrioles/ultrastructure , Centrosome/metabolism , Golgi Apparatus/metabolism , Humans , In Situ Hybridization , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Retinal Pigment Epithelium , Zebrafish
10.
J Am Chem Soc ; 137(8): 3017-23, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25662739

ABSTRACT

Mitochondria are organelles that are readily susceptible to temperature elevation. We selectively delivered a coumarin-based fluorescent iron oxide nanoparticle, Mito-CIO, to the mitochondria. Upon 740 nm laser irradiation, the intracellular temperature of HeLa cells was elevated by 2.1 °C within 5 min when using Mito-CIO, and the treatment resulted in better hyperthermia and a more elevated cytotoxicity than HeLa cells treated with coumarin iron oxide (CIO), which was missing the mitochondrial targeting unit. We further confirmed these results in a tumor xenograft mouse model. To our knowledge, this is the first report of a near-infrared laser irradiation-induced hyperthermic particle targeted to mitochondria, enhancing the cytotoxicity in cancer cells. Our present work therefore may open a new direction in the development of photothermal therapeutics.


Subject(s)
Hyperthermia, Induced/methods , Infrared Rays/therapeutic use , Mitochondria/metabolism , Nanomedicine/methods , Animals , Biological Transport , Cell Transformation, Neoplastic , Coumarins/chemistry , Ferric Compounds/chemistry , Ferric Compounds/metabolism , HeLa Cells , Humans , Intracellular Space/metabolism , Mice , Mice, Inbred BALB C , Nanoparticles/metabolism
11.
Proc Natl Acad Sci U S A ; 109(46): 18674-8, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23112185

ABSTRACT

Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages.


Subject(s)
Animal Structures/ultrastructure , Biomimetic Materials , Fireflies/ultrastructure , Light , Lighting , Animals , Eye/ultrastructure
12.
Proc Natl Acad Sci U S A ; 108(4): 1729-34, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21220341

ABSTRACT

Phytochromes are red and far-red light photoreceptors that regulate various aspects of plant development. One of the less-understood roles of phytochromes is the inhibition of hypocotyl negative gravitropism, which refers to the loss of hypocotyl gravitropism and resulting random growth direction in red or far-red light. This light response allows seedlings to curve toward blue light after emergence from the soil and enhances seedling establishment in the presence of mulch. Phytochromes inhibit hypocotyl negative gravitropism by inhibiting four phytochrome-interacting factors (PIF1, PIF3, PIF4, PIF5), as shown by hypocotyl agravitropism of dark-grown pif1 pif3 pif4 pif5 quadruple mutants. We show that phytochromes inhibit negative gravitropism by converting starch-filled gravity-sensing endodermal amyloplasts to other plastids with chloroplastic or etioplastic features in red or far-red light, whereas PIFs promote negative gravitropism by inhibiting the conversion of endodermal amyloplasts to etioplasts in the dark. By analyzing transgenic plants expressing PIF1 with an endodermis-specific SCARECROW promoter, we further show that endodermal PIF1 is sufficient to inhibit the conversion of endodermal amyloplasts to etioplasts and hypocotyl negative gravitropism of the pif quadruple mutant in the dark. Although the functions of phytochromes in gravitropism and chloroplast development are normally considered distinct, our results indicate that these two functions are closely related.


Subject(s)
Arabidopsis Proteins/physiology , Basic Helix-Loop-Helix Transcription Factors/physiology , Gravitropism/physiology , Hypocotyl/growth & development , Phytochrome A/physiology , Phytochrome B/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Gene Expression Profiling , Gene Expression Regulation, Developmental/radiation effects , Gene Expression Regulation, Plant/radiation effects , Gravitropism/radiation effects , Hypocotyl/genetics , Hypocotyl/radiation effects , Microscopy, Electron, Transmission , Mutation , Phytochrome A/genetics , Phytochrome B/genetics , Plants, Genetically Modified , Plastids/metabolism , Plastids/ultrastructure , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects
13.
Appl Microsc ; 54(1): 2, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253782

ABSTRACT

The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.

14.
J Hazard Mater ; 465: 133516, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38228010

ABSTRACT

The increasing abundance of nanoplastics in the environment is a cause of serious concern and its acute and chronic effects on ecosystems need to be thoroughly investigated. Toward this end, this study investigated the parental transfer of nanoplastics by chronically exposing Pisum sativum (pea) plants to nanoplastics through soil medium. We observed the presence of nanoplastics in harvested fruits and a subsequent generation of plants replanted in uncontaminated soil using confocal laser scanning microscopy. The fluorescence was located in the cell wall of the vascular bundles, but not in the epidermis, indicating the parental transfer of nanoplastics. In addition, we determined the effects of nanoplastics on the health of subsequent plant generations by estimating the reproductive factors and measuring the content of individual nutrients in peas. Decreases in crop yield and fruit biomass, in addition to changes in nutrient content and composition, were noted. The transgenerational effects of nanoplastics on plants can profoundly impact terrestrial ecosystems, including both plant species and their predators, raising critical safety concerns. Our findings highlight the evidence of parental transfer of nanoplastics in the soil through plants and shows that the chronic effects of nanoplastics on plants may pose a threat to the food supply.


Subject(s)
Microplastics , Pisum sativum , Microplastics/pharmacology , Ecosystem , Plant Roots , Plants , Soil
15.
Biomed Pharmacother ; 177: 117000, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941895

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive impairment, loss of learning and memory, and abnormal behaviors. Scopolamine (SCOP) is a non-selective antagonist of muscarinic acetylcholine receptors that exhibits the behavioral and molecular hallmarks of AD. Vanillic acid (VA), a phenolic compound, is obtained from the roots of a traditional plant called Angelica sinensis, and has several pharmacologic effects, including antimicrobial, anti-inflammatory, anti-angiogenic, anti-metastatic, and antioxidant properties. Nevertheless, VA's neuroprotective potential associated with the memory has not been thoroughly investigated. Therefore, this study investigated whether VA treatment has an ameliorative effect on the learning and memory impairment induced by SCOP in rats. Behavioral experiments were utilized to assess the learning and memory performance associated with the hippocampus. Using western blotting analysis and assay kits, the neuronal damage, oxidative stress, and acetylcholinesterase activity responses of hippocampus were evaluated. Additionally, the measurement of long-term potentiation was used to determine the function of synaptic plasticity in organotypic hippocampal slice cultures. In addition, the synaptic vesicles' density and the length and width of the postsynaptic density were evaluated using electron microscopy. Consequently, the behavioral, biochemical, electrophysiological, and ultrastructural analyses revealed that VA treatment prevents learning and memory impairments caused by SCOP in rats. The study's findings suggest that VA has a neuroprotective effect on SCOP-induced learning and memory impairment linked to the hippocampal cholinergic system, oxidative damage, and synaptic plasticity. Therefore, VA may be a prospective therapeutic agent for treating AD.

16.
Plant J ; 71(1): 122-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22380942

ABSTRACT

The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chloroplasts/metabolism , Ribosomes/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutagenesis, Insertional , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , RNA Interference , RNA, Plant/genetics , RNA, Ribosomal, 23S/genetics
17.
Nat Commun ; 14(1): 1111, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849521

ABSTRACT

Transcription factors (TFs) are transported from the cytoplasm to the nucleus and disappear from the nucleus after they regulate gene expression. Here, we discover an unconventional nuclear export of the TF, orthodenticle homeobox 2 (OTX2), in nuclear budding vesicles, which transport OTX2 to the lysosome. We further find that torsin1a (Tor1a) is responsible for scission of the inner nuclear vesicle, which captures OTX2 using the LINC complex. Consistent with this, in cells expressing an ATPase-inactive Tor1aΔE mutant and the LINC (linker of nucleoskeleton and cytoskeleton) breaker KASH2, OTX2 accumulated and formed aggregates in the nucleus. Consequently, in the mice expressing Tor1aΔE and KASH2, OTX2 could not be secreted from the choroid plexus for transfer to the visual cortex, leading to failed development of parvalbumin neurons and reduced visual acuity. Together, our results suggest that unconventional nuclear egress and secretion of OTX2 are necessary not only to induce functional changes in recipient cells but also to prevent aggregation in donor cells.


Subject(s)
Cell Nucleus , Genes, Homeobox , Animals , Mice , Lysosomes , Cell Division , Nuclear Matrix , Blister
18.
Nutrients ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242234

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by memory loss and cognitive decline. Among the suggested pathogenic mechanisms of AD, the cholinergic hypothesis proposes that AD symptoms are a result of reduced synthesis of acetylcholine (ACh). A non-selective antagonist of the muscarinic ACh receptor, scopolamine (SCOP) induced cognitive impairment in rodents. Umbelliferone (UMB) is a Apiaceae-family-derived 7-hydeoxycoumarin known for its antioxidant, anti-tumor, anticancer, anti-inflammatory, antibacterial, antimicrobial, and antidiabetic properties. However, the effects of UMB on the electrophysiological and ultrastructure morphological aspects of learning and memory are still not well-established. Thus, we investigated the effect of UMB treatment on cognitive behaviors and used organotypic hippocampal slice cultures for long-term potentiation (LTP) and the hippocampal synaptic ultrastructure. A hippocampal tissue analysis revealed that UMB attenuated a SCOP-induced blockade of field excitatory post-synaptic potential (fEPSP) activity and ameliorated the impairment of LTP by the NMDA and AMPA receptor antagonists. UMB also enhanced the hippocampal synaptic vesicle density on the synaptic ultrastructure. Furthermore, behavioral tests on male SD rats (7-8 weeks old) using the Y-maze test, passive avoidance test (PA), and Morris water maze test (MWM) showed that UMB recovered learning and memory deficits by SCOP. These cognitive improvements were in association with the enhanced expression of BDNF, TrkB, and the pCREB/CREB ratio and the suppression of acetylcholinesterase activity. The current findings indicate that UMB may be an effective neuroprotective reagent applicable for improving learning and memory against AD.


Subject(s)
Alzheimer Disease , Scopolamine , Rats , Male , Animals , Scopolamine/adverse effects , Scopolamine/metabolism , Acetylcholinesterase/metabolism , Rats, Sprague-Dawley , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuronal Plasticity , Hippocampus/metabolism , Alzheimer Disease/metabolism
19.
Redox Biol ; 60: 102628, 2023 04.
Article in English | MEDLINE | ID: mdl-36774778

ABSTRACT

Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNAifMet for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca2+ flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca2+ influx. Methionine binding to MARS2 would act as a molecular switch that regulates MARS2-MCU interaction. Endogenous knockdown of MARS2 attenuates mitochondrial Ca2+ influx and induces p53 upregulation through the Ca2+-dependent CaMKII/CREB signaling. Subsequently, metabolic rewiring from glycolysis into pentose phosphate pathway is triggered and cellular reactive oxygen species level decreases. This metabolic switch induces inhibition of epithelial-mesenchymal transition (EMT) via cellular redox regulation. Expression of MARS2 is regulated by ZEB1 transcription factor in response to Wnt signaling. Our results suggest the mechanisms of mitochondrial Ca2+ uptake and metabolic control of cancer that are exerted by the key factors of the mitochondrial translational machinery and Ca2+ homeostasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Methionine-tRNA Ligase/metabolism
20.
Adv Sci (Weinh) ; 10(33): e2305096, 2023 11.
Article in English | MEDLINE | ID: mdl-37845006

ABSTRACT

Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.


Subject(s)
DNA-Binding Proteins , Neoplasms , Humans , DNA-Binding Proteins/genetics , Neoplasms/genetics , Synthetic Lethal Mutations , Precision Medicine , Transcription Factors/genetics , Peptides , Phosphoric Diester Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL