Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Chem Inf Model ; 63(5): 1429-1437, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36821004

ABSTRACT

Data-driven drug discovery exploits a comprehensive set of big data to provide an efficient path for the development of new drugs. Currently, publicly available bioassay data sets provide extensive information regarding the bioactivity profiles of millions of compounds. Using these large-scale drug screening data sets, we developed a novel in silico method to virtually screen hit compounds against protein targets, named BEAR (Bioactive compound Enrichment by Assay Repositioning). The underlying idea of BEAR is to reuse bioassay data for predicting hit compounds for targets other than their originally intended purposes, i.e., "assay repositioning". The BEAR approach differs from conventional virtual screening methods in that (1) it relies solely on bioactivity data and requires no physicochemical features of either the target or ligand. (2) Accordingly, structurally diverse candidates are predicted, allowing for scaffold hopping. (3) BEAR shows stable performance across diverse target classes, suggesting its general applicability. Large-scale cross-validation of more than a thousand targets showed that BEAR accurately predicted known ligands (median area under the curve = 0.87), proving that BEAR maintained a robust performance even in the validation set with additional constraints. In addition, a comparative analysis demonstrated that BEAR outperformed other machine learning models, including a recent deep learning model for ABC transporter family targets. We predicted P-gp and BCRP dual inhibitors using the BEAR approach and validated the predicted candidates using in vitro assays. The intracellular accumulation effects of mitoxantrone, a well-known P-gp/BCRP dual substrate for cancer treatment, confirmed nine out of 72 dual inhibitor candidates preselected by primary cytotoxicity screening. Consequently, these nine hits are novel and potent dual inhibitors for both P-gp and BCRP, solely predicted by bioactivity profiles without relying on any structural information of targets or ligands.


Subject(s)
Drug Discovery , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Drug Discovery/methods , Machine Learning , Big Data
2.
Nucleic Acids Res ; 41(Database issue): D252-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23193297

ABSTRACT

Biogenesis and molecular function are two key subjects in the field of microRNA (miRNA) research. Deep sequencing has become the principal technique in cataloging of miRNA repertoire and generating expression profiles in an unbiased manner. Here, we describe the miRGator v3.0 update (http://mirgator.kobic.re.kr) that compiled the deep sequencing miRNA data available in public and implemented several novel tools to facilitate exploration of massive data. The miR-seq browser supports users to examine short read alignment with the secondary structure and read count information available in concurrent windows. Features such as sequence editing, sorting, ordering, import and export of user data would be of great utility for studying iso-miRs, miRNA editing and modifications. miRNA-target relation is essential for understanding miRNA function. Coexpression analysis of miRNA and target mRNAs, based on miRNA-seq and RNA-seq data from the same sample, is visualized in the heat-map and network views where users can investigate the inverse correlation of gene expression and target relations, compiled from various databases of predicted and validated targets. By keeping datasets and analytic tools up-to-date, miRGator should continue to serve as an integrated resource for biogenesis and functional investigation of miRNAs.


Subject(s)
Databases, Nucleic Acid , MicroRNAs/chemistry , MicroRNAs/metabolism , RNA, Messenger/metabolism , High-Throughput Nucleotide Sequencing , Internet , RNA, Messenger/chemistry , Sequence Analysis, RNA , Transcriptome
3.
J Cheminform ; 11(1): 17, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30830479

ABSTRACT

Drug discovery typically involves investigation of a set of compounds (e.g. drug screening hits) in terms of target, disease, and bioactivity. CSgator is a comprehensive analytic tool for set-wise interpretation of compounds. It has two unique analytic features of Compound Set Enrichment Analysis (CSEA) and Compound Cluster Analysis (CCA), which allows batch analysis of compound set in terms of (i) target, (ii) bioactivity, (iii) disease, and (iv) structure. CSEA and CCA present enriched profiles of targets and bioactivities in a compound set, which leads to novel insights on underlying drug mode-of-action, and potential targets. Notably, we propose a novel concept of 'Hit Enriched Assays", i.e. bioassays of which hits are enriched among a given set of compounds. As an example, we show its utility in revealing drug mode-of-action or identifying hidden targets for anti-lymphangiogenesis screening hits. CSgator is available at http://csgator.ewha.ac.kr , and most analytic results are downloadable.

4.
BMC Med Genomics ; 11(Suppl 2): 34, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29697362

ABSTRACT

BACKGROUND: Increasing affordability of next-generation sequencing (NGS) has created an opportunity for realizing genomically-informed personalized cancer therapy as a path to precision oncology. However, the complex nature of genomic information presents a huge challenge for clinicians in interpreting the patient's genomic alterations and selecting the optimum approved or investigational therapy. An elaborate and practical information system is urgently needed to support clinical decision as well as to test clinical hypotheses quickly. RESULTS: Here, we present an integrated clinical and genomic information system (CGIS) based on NGS data analyses. Major components include modules for handling clinical data, NGS data processing, variant annotation and prioritization, drug-target-pathway analysis, and population cohort explorer. We built a comprehensive knowledgebase of genes, variants, drugs by collecting annotated information from public and in-house resources. Structured reports for molecular pathology are generated using standardized terminology in order to help clinicians interpret genomic variants and utilize them for targeted cancer therapy. We also implemented many features useful for testing hypotheses to develop prognostic markers from mutation and gene expression data. CONCLUSIONS: Our CGIS software is an attempt to provide useful information for both clinicians and scientists who want to explore genomic information for precision oncology.


Subject(s)
Genomics , Neoplasms/genetics , Precision Medicine/methods , Gene Expression Profiling , Humans , Molecular Sequence Annotation , Neoplasms/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL