Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36975894

ABSTRACT

Diagnosis of coronary artery disease is mainly based on invasive imaging modalities such as X-ray angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Computed tomography coronary angiography (CTCA) is also used as a non-invasive imaging alternative. In this work, we present a novel and unique tool for 3D coronary artery reconstruction and plaque characterization using the abovementioned imaging modalities or their combination. In particular, image processing and deep learning algorithms were employed and validated for the lumen and adventitia borders and plaque characterization at the IVUS and OCT frames. Strut detection is also achieved from the OCT images. Quantitative analysis of the X-ray angiography enables the 3D reconstruction of the lumen geometry and arterial centerline extraction. The fusion of the generated centerline with the results of the OCT or IVUS analysis enables hybrid coronary artery 3D reconstruction, including the plaques and the stent geometry. CTCA image processing using a 3D level set approach allows the reconstruction of the coronary arterial tree, the calcified and non-calcified plaques as well as the detection of the stent location. The modules of the tool were evaluated for efficiency with over 90% agreement of the 3D models with the manual annotations, while a usability assessment using external evaluators demonstrated high usability resulting in a mean System Usability Scale (SUS) score equal to 0.89, classifying the tool as "excellent".

2.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35741275

ABSTRACT

The prediction of obstructive atherosclerotic disease has significant clinical meaning for the decision making. In this study, a machine learning predictive model based on gradient boosting classifier is presented, aiming to identify the patients of high CAD risk and those of low CAD risk. The machine learning methodology includes five steps: the preprocessing of the input data, the class imbalance handling applying the Easy Ensemble algorithm, the recursive feature elimination technique implementation, the implementation of gradient boosting classifier, and finally the model evaluation, while the fine tuning of the presented model was implemented through a randomized search optimization of the model's hyper-parameters over an internal 3-fold cross-validation. In total, 187 participants with suspicion of CAD previously underwent CTCA during EVINCI and ARTreat clinical studies and were prospectively included to undergo follow-up CTCA. The predictive model was trained using imaging data (geometrical and blood flow based) and non-imaging data. The overall predictive accuracy of the model was 0.81, using both imaging and non-imaging data. The innovative aspect of the proposed study is the combination of imaging-based data with the typical CAD risk factors to provide an integrated CAD risk-predictive model.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3985-3988, 2022 07.
Article in English | MEDLINE | ID: mdl-36086124

ABSTRACT

Cardiovascular disease (CVD) and especially atherosclerosis are chronic inflammatory diseases which cause the atherosclerotic plaque growth in the arterial vessels and the blood flow reduction. Stents have revolutionized the treatment of this disease to a great extent by restoring the blood flow in the vessel. The present study investigates the performance of the blood flow after stent implantation in patient-specific coronary artery and demonstrates the effect of using Newtonian vs. non-Newtonian blood fluid models in the distribution of endothelial shear stress. In particular, the Navier-Stokes and continuity equations were employed, and three non-Newtonian fluid models were investigated (Carreau, Carreau-Yasuda and the Casson model). Computational finite elements models were used for the simulation of blood flow. The comparison of the results demonstrates that the Newtonian fluid model underestimates the calculation of Endothelial Shear Stress, while the three non-Newtonian fluids present similar distribution of shear stress. Keywords: Blood flow dynamics, stented artery, non-Newtonian fluid. Clinical Relevance- This work demonstrates that when blood flow modeling is performed at stented arteries and predictive models are developed, the non-Newtonian nature of blood must be considered.


Subject(s)
Coronary Vessels , Hemodynamics , Computer Simulation , Humans , Rheology , Stress, Mechanical
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4970-4973, 2022 07.
Article in English | MEDLINE | ID: mdl-36086562

ABSTRACT

Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.


Subject(s)
Absorbable Implants , Percutaneous Coronary Intervention , Stents , Tissue Scaffolds
5.
Eur Heart J Cardiovasc Imaging ; 23(12): 1708-1716, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35616068

ABSTRACT

AIMS: Evolving evidence suggests that endothelial wall shear stress (ESS) plays a crucial role in the rupture and progression of coronary plaques by triggering biological signalling pathways. We aimed to investigate the patterns of ESS across coronary lesions from non-invasive imaging with coronary computed tomography angiography (CCTA), and to define plaque-associated ESS values in patients with coronary artery disease (CAD). METHODS AND RESULTS: Symptomatic patients with CAD who underwent a clinically indicated CCTA scan were identified. Separate core laboratories performed blinded analysis of CCTA for anatomical and ESS features of coronary atherosclerosis. ESS was assessed using dedicated software, providing minimal and maximal ESS values for each 3 mm segment. Each coronary lesion was divided into upstream, start, minimal luminal area (MLA), end and downstream segments. Also, ESS ratios were calculated using the upstream segment as a reference. From 122 patients (mean age 64 ± 7 years, 57% men), a total of 237 lesions were analyzed. Minimal and maximal ESS values varied across the lesions with the highest values at the MLA segment [minimal ESS 3.97 Pa (IQR 1.93-8.92 Pa) and maximal ESS 5.64 Pa (IQR 3.13-11.21 Pa), respectively]. Furthermore, minimal and maximal ESS values were positively associated with stenosis severity (P < 0.001), percent atheroma volume (P < 0.001), and lesion length (P ≤ 0.023) at the MLA segment. Using ESS ratios, similar associations were observed for stenosis severity and lesion length. CONCLUSIONS: Detailed behaviour of ESS across coronary lesions can be derived from routine non-invasive CCTA imaging. This may further improve risk stratification.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Plaque, Atherosclerotic , Male , Humans , Middle Aged , Aged , Female , Computed Tomography Angiography , Coronary Angiography/methods , Coronary Vessels/pathology , Constriction, Pathologic , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/pathology , Predictive Value of Tests
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5433-5436, 2021 11.
Article in English | MEDLINE | ID: mdl-34892355

ABSTRACT

Atherosclerosis is a chronic inflammatory disease associated with heart attack and stroke. It causes the growth of atherosclerotic plaques inside the arterial vessels, which in turn results to the reduction of the blood flow to the different organs. Drug-Eluting Stents (DES) are mesh-like wires, carrying pharmaceutical coating, designed to dilate and support the arterial vessel, restore blood flow and through the controlled local drug delivery inhibit neo-intimal thickening. In silico modeling is an efficient method of accurately predicting and assessing the performance of the stenting procedure. The present in silico study investigates the performance of two different stents (Bare Metal Stent, Drug-Eluting Stent) in a patient-specific coronary artery and assesses the effect of stent coating, considering that the same procedural approach is followed by the interventional cardiologist. The results demonstrate that even if small differences are obtained in the two models, the incorporation of the stent coatings (in DES) does not significantly affect the outcomes of the stent deployment, the stresses and strains in the scaffold and the arterial tissue. Nevertheless, it is suggested that regarding the DES expansion, higher pressure should be applied at the inner surface of the stent.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Drug-Eluting Stents , Computer Simulation , Coronary Angiography , Coronary Artery Disease/therapy , Humans , Metals , Prosthesis Design
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4213-4217, 2021 11.
Article in English | MEDLINE | ID: mdl-34892153

ABSTRACT

The introduction of Bioresorbable Vascular Scaffolds (BVS) has revolutionized the treatment of atherosclerosis. InSilc is an in silico clinical trial (ISCT) platform in a Cloud-based environment used for the design, development and evaluation of BVS. Advanced multi-disciplinary and multiscale models are integrated in the platform towards predicting the short/acute and medium/long term scaffold performance. In this study, InSilc platform is employed in a use case scenario and demonstrates how the whole in silico pipeline allows the interpretation of the effect of the arterial anatomy configuration on stent implantation.


Subject(s)
Angioplasty, Balloon, Coronary , Drug-Eluting Stents , Absorbable Implants , Clinical Trials as Topic , Humans , Time Factors
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4354-4357, 2021 11.
Article in English | MEDLINE | ID: mdl-34892184

ABSTRACT

The type of the atherosclerotic plaque has significant clinical meaning since plaque vulnerability depends on its type. In this work, we present a computational approach which predicts the development of new plaques in coronary arteries. More specifically, we employ a multi-level model which simulates the blood fluid dynamics, the lipoprotein transport and their accumulation in the arterial wall and the triggering of inflammation using convection-diffusion-reaction equations and in the final level, we estimate the plaque volume which causes the arterial wall thickening. The novelty of this work relies on the conceptual approach that using the information from 94 patients with computed tomography coronary angiography (CTCA) imaging at two time points we identify the correlation of the computational results with the real plaque components detected in CTCA. In the next step, we use these correlations to generate two types of de-novo plaques: calcified and non-calcified. Evaluation of the model's performance is achieved using eleven patients, who present de-novo plaques at the follow-up imaging. The results demonstrate that the computationally generated plaques are associated significantly with the real plaques indicating that the proposed approach could be used for the prediction of specific plaque type formation.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Humans , Plaque, Atherosclerotic/diagnostic imaging
9.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34943545

ABSTRACT

Assessments of coronary artery disease can be achieved using non-invasive computed tomography coronary angiography (CTCA). CTCA can be further used for the 3D reconstruction of the coronary arteries and the development of computational models. However, image acquisition and arterial reconstruction introduce an error which can be propagated, affecting the computational results and the accuracy of diagnostic and prognostic models. In this work, we investigate the effect of an imaging error, propagated to a diagnostic index calculated using computational modelling of blood flow and then to prognostic models based on plaque growth modelling or binary logistic predictive modelling. The analysis was performed utilizing data from 20 patients collected at two time points with interscan period of six years. The collected data includes clinical and risk factors, biological and biohumoral data, and CTCA imaging. The results demonstrated that the error propagated and may have significantly affected some of the final outcomes. The calculated propagated error seemed to be minor for shear stress, but was major for some variables of the plaque growth model. In parallel, in the current analysis SmartFFR was not considerably affected, with the limitation of only one case located into the gray zone.

10.
Diagnostics (Basel) ; 11(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34441447

ABSTRACT

Intravascular ultrasound (IVUS) imaging offers accurate cross-sectional vessel information. To this end, registering temporal IVUS pullbacks acquired at two time points can assist the clinicians to accurately assess pathophysiological changes in the vessels, disease progression and the effect of the treatment intervention. In this paper, we present a novel two-stage registration framework for aligning pairs of longitudinal and axial IVUS pullbacks. Initially, we use a Dynamic Time Warping (DTW)-based algorithm to align the pullbacks in a temporal fashion. Subsequently, an intensity-based registration method, that utilizes a variant of the Harmony Search optimizer to register each matched pair of the pullbacks by maximizing their Mutual Information, is applied. The presented method is fully automated and only required two single global image-based measurements, unlike other methods that require extraction of morphology-based features. The data used includes 42 synthetically generated pullback pairs, achieving an alignment error of 0.1853 frames per pullback, a rotation error 0.93° and a translation error of 0.0161 mm. In addition, it was also tested on 11 baseline and follow-up, and 10 baseline and post-stent deployment real IVUS pullback pairs from two clinical centres, achieving an alignment error of 4.3±3.9 for the longitudinal registration, and a distance and a rotational error of 0.56±0.323 mm and 12.4°±10.5°, respectively, for the axial registration. Although the performance of the proposed method does not match that of the state-of-the-art, our method relies on computationally lighter steps for its computations, which is crucial in real-time applications. On the other hand, the proposed method performs even or better that the state-of-the-art when considering the axial registration. The results indicate that the proposed method can support clinical decision making and diagnosis based on sequential imaging examinations.

11.
IEEE Open J Eng Med Biol ; 2: 201-209, 2021.
Article in English | MEDLINE | ID: mdl-35402969

ABSTRACT

Goal: To develop a cardiovascular virtual population using statistical modeling and computational biomechanics. Methods: A clinical data augmentation algorithm is implemented to efficiently generate virtual clinical data using a real clinical dataset. An atherosclerotic plaque growth model is employed to 3D reconstructed coronary arterial segments to generate virtual coronary arterial geometries (geometrical data). Last, the combination of the virtual clinical and geometrical data is achieved using a methodology that allows for the generation of a realistic virtual population which can be used in in silico clinical trials. Results: The results show good agreement between real and virtual clinical data presenting a mean gof 0.1 ± 0.08. 400 virtual coronary arteries were generated, while the final virtual population includes 10,000 patients. Conclusions: The virtual arterial geometries are efficiently matched to the generated clinical data, both increasing and complementing the variability of the virtual population.

12.
Front Cardiovasc Med ; 8: 714471, 2021.
Article in English | MEDLINE | ID: mdl-34490377

ABSTRACT

Aims: In this study, we evaluate the efficacy of SmartFFR, a new functional index of coronary stenosis severity compared with gold standard invasive measurement of fractional flow reserve (FFR). We also assess the influence of the type of simulation employed on smartFFR (i.e. Fluid Structure Interaction vs. rigid wall assumption). Methods and Results: In a dataset of 167 patients undergoing either computed tomography coronary angiography (CTCA) and invasive coronary angiography or only invasive coronary angiography (ICA), as well as invasive FFR measurement, SmartFFR was computed after the 3D reconstruction of the vessels of interest and the subsequent blood flow simulations. 202 vessels were analyzed with a mean total computational time of seven minutes. SmartFFR was used to process all models reconstructed by either method. The mean FFR value of the examined dataset was 0.846 ± 0.089 with 95% CI for the mean of 0.833-0.858, whereas the mean SmartFFR value was 0.853 ± 0.095 with 95% CI for the mean of 0.84-0.866. SmartFFR was significantly correlated with invasive FFR values (RCCTA = 0.86, p CCTA < 0.0001, RICA = 0.84, p ICA < 0.0001, R overall = 0.833, p overall < 0.0001), showing good agreement as depicted by the Bland-Altman method of analysis. The optimal SmartFFR threshold to diagnose ischemia was ≤0.83 for the overall dataset, ≤0.83 for the CTCA-derived dataset and ≤0.81 for the ICA-derived dataset, as defined by a ROC analysis (AUCoverall = 0.956, p < 0.001, AUCICA = 0.975, p < 0.001, AUCCCTA = 0.952, p < 0.001). Conclusion: SmartFFR is a fast and accurate on-site index of hemodynamic significance of coronary stenosis both at single coronary segment and at two or more branches level simultaneously, which can be applied to all CTCA or ICA sequences of acceptable quality.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2808-2811, 2020 07.
Article in English | MEDLINE | ID: mdl-33018590

ABSTRACT

In this work we present a novel method for the prediction and generation of atherosclerotic plaques. This is performed in a two-step approach, by employing first a multilevel computational plaque growth model and second a correlation between the model's results and the 3D reconstructed follow-up plaques. In particular, computer tomography coronary angiography (CTCA) data and blood tests were collected from patients at two time points. Using the baseline data, the plaque growth is simulated using a multi-level computational model which includes: i) modeling of the blood flow dynamics, ii) modeling of low and high density lipoproteins and monocytes' infiltration in the arterial wall, and the species reactions during the atherosclerotic process, and iii) modeling of the arterial wall thickening. The correlation between the followup plaques and the simulated plaque density distribution resulted to the extraction of a threshold of the plaque density, that can be used to identify plaque areas.Clinical Relevance- The methodology presented in this work is a first step to the prediction of the plaque shape and location of patients with atherosclerosis and could be used as an additional tool for patient-specific risk stratification.


Subject(s)
Coronary Artery Disease , Plaque, Atherosclerotic , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Heart , Humans , Plaque, Atherosclerotic/diagnostic imaging
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1576-1579, 2020 07.
Article in English | MEDLINE | ID: mdl-33018294

ABSTRACT

Quantitative Coronary Angiography (QCA) is an important tool in the study of coronary artery disease. Validation of this technique is crucial for their ongoing development and refinement although it is difficult due to several factors such as potential sources of error. The present work aims to a further validation of a new semi-automated method for three-dimensional (3D) reconstruction of coronary bifurcations arteries based on X-Ray Coronary Angiographies (CA). In a dataset of 40 patients (79 angiographic views), we used the aforementioned method to reconstruct them in 3D space. The validation was based on the comparison of these 3D models with the true silhouette of 2D models annotated by an expert using specific metrics. The obtained results indicate a good accuracy for the most parameters (≥ 90 %). Comparison with similar works shows that our new method is a promising tool for the 3D reconstruction of coronary bifurcations and for application in everyday clinical use.


Subject(s)
Coronary Artery Disease , Imaging, Three-Dimensional , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Heart , Humans
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2812-2815, 2020 07.
Article in English | MEDLINE | ID: mdl-33018591

ABSTRACT

Cardiovascular diseases are nowadays considered as the main cause of morbidity and mortality worldwide. Coronary Artery Disease (CAD), the most typical form of cardiovascular disease is diagnosed by a variety of imaging modalities, both invasive and non-invasive, which involve either risk implications or high cost. Therefore, several attempts have been undertaken to early diagnose and predict either the high CAD risk patients or the cardiovascular events, implementing machine learning techniques. The purpose of this study is to present a classification scheme for the prediction of Percutaneous Coronary Intervention (PCI) stenting placement, using image-based data. The proposed classification model is a gradient boosting classifier, incorporated into a class imbalance handling technique, the Easy ensemble scheme and aims to classify coronary segments into high CAD risk and low CAD risk, based on their PCI placement. Through this study, we investigate the importance of image based features, concluding that the combination of the coronary degree of stenosis and the fractional flow reserve achieves accuracy 78%.


Subject(s)
Coronary Artery Disease , Fractional Flow Reserve, Myocardial , Percutaneous Coronary Intervention , Coronary Artery Disease/diagnostic imaging , Humans , Stents , Trees
16.
Sci Rep ; 10(1): 17409, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060746

ABSTRACT

Atherosclerosis is the one of the major causes of mortality worldwide, urging the need for prevention strategies. In this work, a novel computational model is developed, which is used for simulation of plaque growth to 94 realistic 3D reconstructed coronary arteries. This model considers several factors of the atherosclerotic process even mechanical factors such as the effect of endothelial shear stress, responsible for the initiation of atherosclerosis, and biological factors such as the accumulation of low and high density lipoproteins (LDL and HDL), monocytes, macrophages, cytokines, nitric oxide and formation of foams cells or proliferation of contractile and synthetic smooth muscle cells (SMCs). The model is validated using the serial imaging of CTCA comparing the simulated geometries with the real follow-up arteries. Additionally, we examine the predictive capability of the model to identify regions prone of disease progression. The results presented good correlation between the simulated lumen area (P < 0.0001), plaque area (P < 0.0001) and plaque burden (P < 0.0001) with the realistic ones. Finally, disease progression is achieved with 80% accuracy with many of the computational results being independent predictors.


Subject(s)
Computational Biology , Plaque, Atherosclerotic/pathology , Biomechanical Phenomena , Coronary Artery Disease/blood , Coronary Artery Disease/pathology , Disease Progression , Humans , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6998-7001, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947449

ABSTRACT

Atheromatic plaque progression is considered as a typical pathological condition of arteries and although atherosclerosis is considered as a systemic inflammatory disorder, atheromatic plaque is not uniformly distributed in the arterial tree. Except for the systematic atherosclerosis risk factors, biomechanical forces, LDL concentration and artery geometry contribute to the atherogenesis and atherosclerotic plaque evolution. In this study, we calculate biomechanical forces acting within the artery and we develop a machine learning model for the prediction of atheromatic plaque progression. 1018 coronary sites of 3 mm, derived by 40 individuals, are utilized to develop the model and after the implementation of 4 different tree based prediction schemes, we achieve a prediction accuracy of 0.84. The best accuracy was achieved by the implementation of a tree-based classifier, the Random Forest classifier, after a ranking feature selection methodology. The novel aspect of the proposed methodology is the implementation of machine learning models in order to address the cardiovascular data modeling, aiming to predict the occurrence of an outcome and not to investigate the association of input features.


Subject(s)
Plaque, Atherosclerotic , Disease Progression , Humans , Machine Learning , Plaque, Amyloid
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5006-5009, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946984

ABSTRACT

The development of 3D reconstruction methods of the coronary vasculature has gained substantial ground during the past years. The accurate 3D reconstruction is of utmost importance because the propagation of errors caused by either equipment calibration errors, human errors or other error sources can seriously affect the computation of critical hemodynamic parameters such as Endothelial Shear Stress, intracoronary pressures etc. In this work, we present a study on how the 3D reconstruction error can affect the subsequent blood flow simulations in 3D coronary arterial models. Eight arterial segments were reconstructed, creating the control models and were then modified in order to create an underestimated and an overestimated model of the same segment using a 5% error. Cross-sectional ESS values, as well as, smartFFR values were calculated to examine the effect of the reconstruction error. As it was expected, the underestimated models presented with higher ESS values and lower smartFFR values, whereas the overestimated models presented with lower ESS values and higher smartFFR values, respectively.


Subject(s)
Coronary Vessels , Imaging, Three-Dimensional , Coronary Angiography , Coronary Vessels/diagnostic imaging , Cross-Sectional Studies , Hemodynamics , Humans
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5010-5013, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946985

ABSTRACT

In this work, we present a novel computational approach for the prediction of atherosclerotic plaque growth. In particular, patient-specific coronary computed tomography angiography (CCTA) data were collected from 60 patients at two time points. Additionally, blood samples were collected for biochemical analysis. The CCTA data were used for 3D reconstruction of the coronary arteries, which were then used for computational modeling of plaque growth. The model of plaque growth is based on a multi-level approach: i) the blood flow is modeled in the lumen and the arterial wall, ii) the low and high density lipoprotein and monocytes transport is included, and iii) the major atherosclerotic processes are modeled including the foam cells formation, the proliferation of smooth muscle cells and the formation of atherosclerotic plaque. Validation of the model was performed using the follow-up CCTA. The results show a correlation of the simulated follow-up arterial wall area to be correlated with the corresponding realistic follow-up with r2=0.49, P<; 0.0001.


Subject(s)
Computed Tomography Angiography , Coronary Artery Disease , Plaque, Atherosclerotic , Coronary Angiography , Coronary Vessels , Humans , Lipoproteins, HDL , Models, Theoretical , Plaque, Atherosclerotic/diagnosis , Tomography, X-Ray Computed
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7002-7005, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947450

ABSTRACT

SMARTool aims to the development of Decision Support Systems (DSS) for the risk stratification, diagnosis, prediction and treatment of coronary artery disease (CAD). In this work, we present the results of the prediction DSS, which utilizes clinical data, imaging morphological characteristics and computational modeling results. More specifically, 263 patients were recruited in the SMARTool clinical trial and 196 patients were selected for the DSS development. Traditional risk factors, blood examinations and computed coronary tomography angiography (CCTA) were performed at two different time points with an interscan period 6.22 ± 1.42 years. Computational modeling of blood flow and LDL transport was performed at the baseline. Predictive models are built for the prediction of CAD at the follow-up. The results show that CAD can be predicted with 83% accuracy, when low ESS, high accumulation of LDL and imaging data are included in the model.


Subject(s)
Coronary Artery Disease , Computed Tomography Angiography , Coronary Angiography , Humans , Predictive Value of Tests , Risk Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL