Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Evol ; 40(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36477354

ABSTRACT

Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-side and were genetically linked in 10,245 individuals of two independent mapping populations segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene expression, matching the expected characteristics of SI determinants known from other systems. Revisiting the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new insights into the origin and evolution of the unique gametophytic SI system in one of the largest and economically most important plant families.


Subject(s)
Lolium , Poaceae , Poaceae/genetics , Lolium/genetics , Pollen/genetics , Plants , Genomics
2.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700534

ABSTRACT

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Subject(s)
Chromosome Mapping , Haploidy , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Chromosome Mapping/methods , Plant Breeding , Genome, Plant , Phenotype , Alleles , Chromosomes, Plant/genetics , Genes, Plant
3.
Theor Appl Genet ; 136(4): 93, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37010631

ABSTRACT

KEY MESSAGE: Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Zea mays/metabolism , Plant Breeding , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide
4.
J Exp Bot ; 73(16): 5460-5473, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35608947

ABSTRACT

The identification of genomic regions associated with root traits and the genomic prediction of untested genotypes can increase the rate of genetic gain in maize breeding programs targeting roots traits. Here, we combined two maize association panels with different genetic backgrounds to identify single nucleotide polymorphisms (SNPs) associated with root traits, and used a genome-wide association study (GWAS) and to assess the potential of genomic prediction for these traits in maize. For this, we evaluated 377 lines from the Ames panel and 302 from the Backcrossed Germplasm Enhancement of Maize (BGEM) panel in a combined panel of 679 lines. The lines were genotyped with 232 460 SNPs, and four root traits were collected from 14-day-old seedlings. We identified 30 SNPs significantly associated with root traits in the combined panel, whereas only two and six SNPs were detected in the Ames and BGEM panels, respectively. Those 38 SNPs were in linkage disequilibrium with 35 candidate genes. In addition, we found higher prediction accuracy in the combined panel than in the Ames or BGEM panel. We conclude that combining association panels appears to be a useful strategy to identify candidate genes associated with root traits in maize and improve the efficiency of genomic prediction.


Subject(s)
Genome-Wide Association Study , Zea mays , Genomics , Phenotype , Plant Breeding , Plant Roots/genetics , Polymorphism, Single Nucleotide , Seedlings/genetics , Zea mays/genetics
5.
Theor Appl Genet ; 135(5): 1717-1730, 2022 May.
Article in English | MEDLINE | ID: mdl-35247071

ABSTRACT

KEY MESSAGE: MADS26 affecting maize seed germination was identified by GWAS and transcriptomics. Gene-based association analyses revealed three variations within MADS26 regulating seed germination traits. Overexpressed MADS26 in Arabidopsis improved seed germination. Seed germination ability is extremely important for maize production. Exploring the genetic control of seed germination ability is useful for improving maize yield. In this study, a genome-wide association study (GWAS) was conducted to excavate the significant SNPs involved in seed germination ability based on an association panel consisting of 300 lines. A total of 11 SNPs and 75 candidate genes were significantly associated with the seed germination traits. In addition, we constructed 24 transcriptome libraries from maize seeds at four germination stages using two inbred lines with contrasting germination rates. In total, 15,865 differentially expressed genes were induced during seed germination. Integrating the results of GWAS and transcriptome analysis uncovered four prioritized genes underlying maize seed germination. The variations located in the promoter of Zm00001d017932, a MADS-transcription factor 26 (MADS26), were verified to affect the seed germination, and the haplotype TAT was determined as a favorable haplotype for high-germination capability. MADS26 was induced to express by ethylene during seed germination in maize and overexpressing MADS26 increased the seed germination ability in Arabidopsis. These findings will contribute to understanding of the genetic and molecular mechanisms on seed germination and the genetic modification of seed germination ability in maize.


Subject(s)
Arabidopsis , Zea mays , Arabidopsis/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome-Wide Association Study , Germination/genetics , Seeds/genetics , Transcriptome , Zea mays/genetics
6.
Theor Appl Genet ; 135(6): 1829-1841, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35305125

ABSTRACT

KEY MESSAGE: Spontaneous haploid genome doubling is not associated with undesirable linkage drag effects. The presence of spontaneous doubling genes allows maximum exploitation of variability from the temperate-adapted BS39 population Tropical non-elite maize (Zea mays L.) germplasm, such as BS39, provides a unique opportunity for broadening the genetic base of U.S. Corn Belt germplasm. In vivo doubled haploid (DH) technology has been used to efficiently exploit non-elite germplasm. It can help to purge deleterious recessive alleles. The objectives of this study were to determine the usefulness of BS39-derived inbred lines using both SSD and DH methods, to determine the impact of spontaneous as compared with artificial haploid genome doubling on genetic variance among BS39-derived DH lines, and to identify SNP markers associated with agronomic traits among BS39 inbreds monitored at testcross level. We developed two sets of inbred lines directly from BS39 by DH and SSD methods, named BS39_DH and BS39_SSD. Additionally, two sets were derived from a cross between BS39 and A427 (SHGD donor) by DH and SSD methods, named BS39 × A427_DH and BS39 × A427_SSD, respectively. Grain yield, moisture, plant height, ear height, stalk lodging, and root lodging were measured to estimate genetic parameters. For genome-wide association analysis, inbred lines were genotyped using genotype-by-sequencing and Diversity Array Technology Sequencing (DArTSeq). Some BS39-derived inbred lines performed better than elite germplasm inbreds and all sets showed significant genetic variance. The presence of spontaneous haploid genome doubling genes did not affect performance of inbred lines. Five SNPs were significant and three of them located within genes related to plant development or abiotic stresses. These results demonstrate the potential of BS39 to add novel alleles to temperate elite germplasm.


Subject(s)
Genome-Wide Association Study , Zea mays , Genotype , Haploidy , Seeds , Zea mays/genetics
7.
Int J Mol Sci ; 23(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35955919

ABSTRACT

The ability of immature embryos to induce embryogenic callus (EC) is crucial for genetic transformation in maize, which is highly genotype-dependent. To dissect the genetic basis of maize EC induction, we conducted QTL mapping for four EC induction-related traits, the rate of embryogenic callus induction (REC), rate of shoot formation (RSF), length of shoot (LS), and diameter of callus (DC) under three environments by using an IBM Syn10 DH population derived from a cross of B73 and Mo17. These EC induction traits showed high broad-sense heritability (>80%), and significantly negative correlations were observed between REC and each of the other traits across multiple environments. A total of 41 QTLs for EC induction were identified, among which 13, 12, 10, and 6 QTLs were responsible for DC, RSF, LS, and REC, respectively. Among them, three major QTLs accounted for >10% of the phenotypic variation, including qLS1-1 (11.54%), qLS1-3 (10.68%), and qREC4-1 (11.45%). Based on the expression data of the 215 candidate genes located in these QTL intervals, we performed a weighted gene co-expression network analysis (WGCNA). A combined use of KEGG pathway enrichment and eigengene-based connectivity (KME) values identified the EC induction-associated module and four hub genes (Zm00001d028477, Zm00001d047896, Zm00001d034388, and Zm00001d022542). Gene-based association analyses validated that the variations in Zm00001d028477 and Zm00001d034388, which were involved in tryptophan biosynthesis and metabolism, respectively, significantly affected EC induction ability among different inbred lines. Our study brings novel insights into the genetic and molecular mechanisms of EC induction and helps to promote marker-assisted selection of high-REC varieties in maize.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping , Genes, Plant , Phenotype , Zea mays/genetics , Zea mays/metabolism
8.
Mol Genet Genomics ; 296(5): 1057-1070, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34117523

ABSTRACT

The heavy metals lead and cadmium have become important pollutants in the environment, which exert negative effects on plant morphology, growth and photosynthesis. It is particularly significant to uncover the genetic loci and the causal genes for lead and cadmium tolerance in plants. This study used an IBM Syn10 DH population to identify the quantitative trait loci (QTL) controlling maize seedling tolerance to lead and cadmium by linkage mapping. The broad-sense heritability of these seedling traits ranged from 65.8-97.3% and 32.0-98.8% under control (CK) and treatment (T) conditions, respectively. A total of 53 and 64 QTL were detected under CK and T conditions, respectively. Moreover, 42 QTL were identified using lead and cadmium tolerance coefficient (LCTC). Among these QTL, five and two major QTL that explained > 10% of phenotypic variation were identified under T condition and using LCTC, respectively. Furthermore, eight QTL were simultaneously identified by T and LCTC, explaining 5.23% to 9.21% of the phenotypic variations. Within these major and common QTL responsible for the combined heavy metal tolerance, four candidate genes (Zm00001d048759, Zm00001d004689, Zm00001d004843, Zm00001d033527) were previously reported to correlate with heavy metal transport and tolerance. These findings will contribute to functional gene identification and molecular marker-assisted breeding for improving heavy metal tolerance in maize.


Subject(s)
Cadmium/toxicity , Lead/toxicity , Quantitative Trait Loci , Seedlings/genetics , Zea mays/drug effects , Zea mays/genetics , Chromosome Mapping , Environmental Pollutants/toxicity , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Phenotype , Seedlings/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics
9.
Theor Appl Genet ; 134(5): 1423-1434, 2021 May.
Article in English | MEDLINE | ID: mdl-33543310

ABSTRACT

KEY MESSAGE: A major locus for spontaneous haploid genome doubling was detected by a case-control GWAS in an exotic maize germplasm. The combination of double haploid breeding method with this locus leads to segregation distortion on genomic regions of chromosome five. Temperate maize (Zea mays L.) breeding programs often rely on limited genetic diversity, which can be expanded by incorporating exotic germplasm. The aims of this study were to perform characterization of inbred lines derived from the tropical BS39 population using different breeding methods, to identify genomic regions showing segregation distortion in lines derived by the DH process using spontaneous haploid genome doubling (SHGD), and use case-control association mapping to identify loci controlling SHGD. Four different sets were used: BS39_DH and BS39_SSD were derived from the BS39 population by DH and single-seed descendent (SSD) methods, and BS39 × A427_DH and BS39 × A427_SSD from the cross between BS39 and A427. A total of 663 inbred lines were genotyped. The analyses of gene diversity and genetic differentiation for the DH sets provided evidence of the presence of a SHGD locus near the centromere of chromosome 5. The case-control GWAS for the DH set also pinpointed this locus. Haplotype sharing analysis showed almost 100% exclusive contribution of the A427 genome in the same region on chromosome 5 of BS39 × A427_DH, presumably due to an allele in this region affecting SHGD. This locus enables DH line production in exotic populations without colchicine or other artificial haploid genome doubling.


Subject(s)
Chromosomes, Plant/genetics , Colchicine/pharmacology , Genome, Plant , Haploidy , Plant Breeding/methods , Quantitative Trait Loci , Zea mays/genetics , Case-Control Studies , Chromosome Mapping/methods , Genetics, Population , Genome-Wide Association Study , Tubulin Modulators/pharmacology , Zea mays/drug effects , Zea mays/growth & development
10.
Theor Appl Genet ; 134(10): 3305-3318, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218289

ABSTRACT

KEYMESSAGE: Two hub genes GRMZM2G075104 and GRMZM2G333183 involved in salt tolerance were identified by GWAS and WGCNA. Furthermore, they were verified to affect salt tolerance by candidate gene association analysis. Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize.


Subject(s)
Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Salt Tolerance , Seedlings/physiology , Stress, Physiological , Zea mays/physiology , Genome, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Seedlings/genetics , Transcriptome , Zea mays/genetics
11.
Ann Bot ; 127(7): 841-852, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33755100

ABSTRACT

BACKGROUND: Self-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding. SCOPE: We review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the Lolium-Festuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species. CONCLUSIONS: A better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.


Subject(s)
Inbreeding Depression , Poaceae , Plant Breeding , Poaceae/genetics , Pollination , Self-Fertilization
12.
Plant Biotechnol J ; 18(1): 207-221, 2020 01.
Article in English | MEDLINE | ID: mdl-31199064

ABSTRACT

Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.


Subject(s)
Chromosome Mapping , Genetic Linkage , Quantitative Trait Loci , Seeds/growth & development , Zea mays/genetics , Phenotype , Polymorphism, Single Nucleotide , Zea mays/growth & development
13.
Bioinformatics ; 35(14): 2512-2514, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30508039

ABSTRACT

SUMMARY: We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. AVAILABILITY AND IMPLEMENTATION: GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Software , Computers
14.
Theor Appl Genet ; 133(2): 547-561, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31749017

ABSTRACT

KEY MESSAGE: High-density haplotype analysis revealed significant haplotype sharing between ex-PVPs registered from 1976 to 1992 and key maize founders, and uncovered similarities and differences in haplotype sharing patterns by company and heterotic group. Proprietary inbreds developed by the private seed industry have been the major source for driving genetic gain in successful North American maize hybrids for decades. Much of the history of industry germplasm can be traced back to key founder lines, some of which were pivotal in the development of prominent heterotic groups. Previous studies have summarized pedigree-based relationships, genetic diversity and population structure among commercial inbreds with expired Plant Variety Protection (ex-PVP). However, less is known about the extent of haplotype sharing between historical founders and ex-PVPs. A better understanding of the relationships between founders and ex-PVPs provides insight into the haplotype and heterotic group structure among industry germplasm. We performed high-density haplotype analysis with 11.3 million SNPs on 212 maize inbreds, which included 157 ex-PVPs registered 1976-1992 and 55 public lines relevant to PVPs. Among these lines were 12 key founders identified in literature review: 207, A632, B14, B37, B73, LH123HT, LH82, Mo17, Oh43, OH7, PHG39 and Wf9. Our results revealed that, on average, 81.6% of an ex-PVP's genome is shared with at least 1 of these 12 founder lines and more than half when limited to B73, Mo17 and 207. Quantifiable similarities and contrasts among heterotic groups and major US seed industry companies were also observed. The results from this study provide high-resolution haplotype data on ex-PVP germplasm, confirm founder relationship trends observed in previous studies, uncover region-specific haplotype structure differences and demonstrate how haplotype sharing analysis can be used as a tool to explore germplasm diversity.


Subject(s)
Crops, Agricultural/genetics , Haplotypes , Plant Breeding/history , Zea mays/genetics , Genetic Variation/genetics , Genotype , History, 20th Century , Hybrid Vigor , Polymorphism, Single Nucleotide
15.
Theor Appl Genet ; 133(7): 2131-2140, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32285163

ABSTRACT

KEY MESSAGE: A major QTL for SHGD was identified on chromosome 5 with stable expression across environments. The introgression this QTL can overcome the need of colchicine in DH lines development. Genome doubling of haploids is one of the major constraints of large-scale doubled haploid (DH) technology. Improving spontaneous haploid genome doubling (SHGD) is an alternative to overcome this limitation. In this study, we aimed to construct a high-density linkage map based on genotyping by sequencing of single nucleotide polymorphism, to detect QTL and QTL by environment (Q by E) interactions affecting SHGD and to identify the best trait for mapping and selection of haploid male fertility (HMF). To this end, a biparental population of 220 F2:3 families was developed from a cross between A427 (high HMF) and CR1Ht (moderate HMF) to be used as donor. A high-density linkage map was constructed containing 4171 SNP markers distributed over 10 chromosomes with an average distance between adjacent markers of 0.51 cM. QTL mapping for haploid fertile anther emergence, pollen production, tassel size, and HMF, identified 27 QTL across three environments, and Q by E interactions were significant. A major QTL was identified on chromosome 5. This QTL explained over 45% of the observed variance for all traits across all environments. The introgression of this major QTL, using marker-assisted backcrossing, has great potential to overcome the need of using colchicine in DH line development.


Subject(s)
Genome, Plant , Haploidy , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Crosses, Genetic , Genetic Linkage , Genotype , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
16.
Theor Appl Genet ; 133(2): 623-634, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797010

ABSTRACT

KEY MESSAGE: Candidate genes on grain drying rate (GDR) were identified, and drying molecular mechanism of grain was explored by integrating genome-wide association with transcriptomic analysis in maize. Grain drying rate (GDR) is a key determinant of grain moisture at harvest. Here, a genome-wide association study (GWAS) of 309 inbred maize lines was used to identify single-nucleotide polymorphisms (SNPs) associated with drying rates of grain, cob and bract. Out of 217,933 SNPs, seven significant SNPs were repeatedly identified in four environments (P < 10-4). Based on genomic position of significant SNPs, six candidate genes were identified, one of which (Zm00001d047468) was verified by transcriptomic data between inbred lines with high and low GDR, indicating stable and reliable correlation with GDR. To further detect more genes correlated with GDR and explore drying molecular mechanism of grain, expression profile of all GWAS-identified genes (4941) detected from different environments, tissues and developmental stage was evaluated by transcriptomic data of six inbred lines with high or low GDR. Results revealed 162 genes exhibit up-regulated expression and another 123 down-regulated in three higher-GDR inbred lines. Based on GO enrichment, 162 up-regulated genes were significantly enriched into grain primary metabolic process, nitrogen compound metabolic process and macromolecule metabolic process (P < 0.05), which indicated grain filling imposes notable influence on GDR before and after physiological maturity. Our results lay foundation in accelerating development of higher-GDR maize germplasm through marker-assisted selection and clarifying genetic mechanism of GDR in maize.


Subject(s)
Edible Grain/genetics , Gene Expression Regulation, Plant/genetics , Transcriptome/genetics , Zea mays/genetics , Down-Regulation , Edible Grain/chemistry , Edible Grain/metabolism , Edible Grain/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Gene Ontology , Genome-Wide Association Study , Genomics , Nitrogen/metabolism , Phenotype , Phylogeny , Polymorphism, Single Nucleotide , Up-Regulation , Zea mays/metabolism
17.
BMC Plant Biol ; 19(1): 216, 2019 May 23.
Article in English | MEDLINE | ID: mdl-31122195

ABSTRACT

BACKGROUND: Adaptation to drought-prone environments requires robust root architecture. Genotypes with a more vigorous root system have the potential to better adapt to soils with limited moisture content. However, root architecture is complex at both, phenotypic and genetic level. Customized mapping panels in combination with efficient screenings methods can resolve the underlying genetic factors of root traits. RESULTS: A mapping panel of 233 spring barley genotypes was evaluated for root and shoot architecture traits under non-stress and osmotic stress. A genome-wide association study elucidated 65 involved genomic regions. Among them were 34 root-specific loci, eleven hotspots with associations to up to eight traits and twelve stress-specific loci. A list of candidate genes was established based on educated guess. Selected genes were tested for associated polymorphisms. By this, 14 genes were identified as promising candidates, ten remained suggestive and 15 were rejected. The data support the important role of flowering time genes, including HvPpd-H1, HvCry2, HvCO4 and HvPRR73. Moreover, seven root-related genes, HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 are confirmed as promising candidates. For the QTL with the highest allelic effect for root thickness and plant biomass a homologue of the Arabidopsis Trx-m3 was revealed as the most promising candidate. CONCLUSIONS: This study provides a catalogue of hotspots for seedling growth, root and stress-specific genomic regions along with candidate genes for future potential incorporation in breeding attempts for enhanced yield potential, particularly in drought-prone environments. Root architecture is under polygenic control. The co-localization of well-known major genes for barley development and flowering time with QTL hotspots highlights their importance for seedling growth. Association analysis revealed the involvement of HvPpd-H1 in the development of the root system. The co-localization of root QTL with HERK2, HvARF04, HvEXPB1, PIN5, PIN7, PME5 and WOX5 represents a starting point to explore the roles of these genes in barley. Accordingly, the genes HvHOX2, HsfA2b, HvHAK2, and Dhn9, known to be involved in abiotic stress response, were located within stress-specific QTL regions and await future validation.


Subject(s)
Droughts , Genes, Plant/physiology , Genome, Plant/genetics , Hordeum/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping , Genome-Wide Association Study , Genotype , Hordeum/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Seedlings/genetics , Seedlings/growth & development
18.
Mol Genet Genomics ; 294(5): 1277-1288, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31139941

ABSTRACT

Stalk lodging severely limits the grain yield of maize (Zea mays L.). Mechanical stalk strength can be reflected by the traits of stalk diameter (SD), stalk bending strength (SBS), and lodging rind penetrometer resistance (RPR). To determine the genetic basis of maize stalk lodging, quantitative trait loci (QTLs) were mapped for these three traits using the IBM Syn10 DH population in three environments. The results indicated that there were strong genetic correlations among the three traits, and the analyses of phenotypic variations for SD, SBS, and RPR across the three environments showed high broad-sense heritability (0.6843, 0.5175, and 0.7379, respectively). In total, 44 significant QTLs were identified control the above traits across the 3 environments. A total of 14, 14, and 16 QTLs were identified for SD, SBS, and RPR across single-environment mapping, respectively. Notably, ten QTLs were stably expressed across multiple-environments, including two QTLs for SD, three for SBS, and five for RPR. Three major QTLs each accounting for over 10% of the phenotypic variation were qSD6-2 (10.03%), qSD8-2 (13.73%), and qSBS1-2 (11.89%). Comprehensive analysis of all QTLs in this study revealed that 5 QTL clusters including 12 QTLs were located on chromosomes 1, 3, 7, and 8, respectively. Among these 44 QTLs, 9 harbored 13 stalk lodging-associated SNPs that were detected by our recently published work, with 1 SNP successfully validated in the IBM Syn10 DH population. These chromosomal regions will be useful for marker-assisted selection and fine mapping of stalk lodging-related traits in maize.


Subject(s)
Genes, Plant/genetics , Zea mays/genetics , Chromosome Mapping/methods , Crosses, Genetic , Edible Grain/genetics , Genetic Linkage/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
19.
Theor Appl Genet ; 132(3): 817-849, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30798332

ABSTRACT

Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.


Subject(s)
Plant Breeding/methods , Zea mays/genetics , Chromosome Mapping , Genetic Variation , Genome, Plant , Genomics
20.
J Exp Bot ; 69(21): 5077-5087, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30085089

ABSTRACT

Heterosis and increasing planting density have contributed to improving maize grain yield (GY) for several decades. As planting densities increase, the GY per plot also increases, whereas the contribution of heterosis to GY decreases. There are trade-offs between heterosis and planting density, and the transcriptional characterization of heterosis may explain the mechanism involved. In this study, 48 transcriptome libraries were sequenced from four inbred Chinese maize lines and their F1 hybrids. They were planted at densities of 45000 and 67500 plants ha-1. Maternal-effect differentially expressed genes (DEGs) played important roles in processes related to photosynthesis and carbohydrate biosynthesis and metabolism. Paternal-effect DEGs participated in abiotic/biotic stress response and plant hormone production under high planting density. Weighted gene co-expression network analysis revealed that high planting density induced heterosis-related genes regulating abiotic/biotic stress response, plant hormone biosynthesis, and ubiquitin-mediated proteolysis, but repressed other genes regulating energy formation. Under high planting density, maternal genes were mainly enriched in the photosynthesis reaction center, while paternal genes were mostly concentrated in the peripheral antenna system. Four important genes were identified in maize heterosis and high planting density, all with functions in photosynthesis, starch biosynthesis, auxin metabolism, gene silencing, and RNAi.


Subject(s)
Crop Production/methods , Hybrid Vigor/genetics , Plant Proteins/genetics , Transcriptome , Zea mays/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Population Density , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL