Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Water Sci Technol ; 84(2): 284-292, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34312336

ABSTRACT

The uncertainty associated with the determination of load parameters, which is a key step in the design of wastewater treatment plants (WWTPs), was investigated on the basis of data sets from 58 WWTPs. A further analysed aspect was the organic load variations associated with variable sewage temperatures. Data from 26 WWTPs with a high inflow sampling frequency was used to simulate scenarios to investigate the effect of lower sampling frequencies through a Monte Carlo approach. The calculation of 85-percentile values for chemical oxygen demand (COD) loadings based on only 26 samples per year is associated with a variability of up to ±18%. Approximately 90 samples per year will be necessary to reduce this uncertainty for estimation of COD loadings below 10%. Hence, a low sampling frequency can potentially lead to under- or overestimation of design parameters. Through an analogous approach, it was possible to identify uncertainties of ±11% in COD loading when weekly average data was used with four samples per week. Finally, a tendency to lower COD input loads with increasing temperatures was identified, with a reduction of about 1% of the average loading per degree Celsius.


Subject(s)
Sewage , Water Purification , Biological Oxygen Demand Analysis , Waste Disposal, Fluid , Wastewater/analysis
2.
Water Sci Technol ; 77(7-8): 1951-1959, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29676752

ABSTRACT

A mathematical model for a granular biofilm reactor for leachate treatment was validated by long-term measured data to investigate the mechanisms and drivers influencing biological nitrogen removal and microbial consortia dynamics. The proposed model, based on Activated Sludge Model (ASM1), included anaerobic ammonium oxidation (anammox), nitrifying and heterotrophic denitrifying bacteria which can attach and grow on granular activated carbon (GAC) particles. Two kinetic descriptions for the model were proposed: with and without soluble microbial products (SMP) and extracellular polymeric substance (EPS). The model accuracy was checked using recorded total inorganic nitrogen concentrations in the effluent and estimated relative abundance of active bacteria using quantitative fluorescence in-situ hybridization (qFISH). Results suggested that the model with EPS kinetics fits better for the relative abundance of anammox bacteria and nitrifying bacteria compared to the model without EPS. The model with EPS and SMP confirms that the growth and existence of heterotrophs in anammox biofilm systems slightly increased due to including the kinetics of SMP production in the model. During the one-year simulation period, the fractions of autotrophs and EPS in the biomass were almost stable but the fraction of heterotrophs decreased which is correlated with the reduction in nitrogen surface loading on the biofilm.


Subject(s)
Ammonium Compounds/metabolism , Bacterial Physiological Phenomena , Biofilms , Bioreactors , Microbial Consortia/physiology , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Anaerobiosis , Models, Biological , Oxidation-Reduction
3.
Water Sci Technol ; 2017(2): 370-377, 2018 May.
Article in English | MEDLINE | ID: mdl-29851389

ABSTRACT

The thermal reactivation of granular activated carbon is a substantial ecological and economic benefit in the process of drinking water treatment. A significant amount of abraded carbon, which is similar to powdered activated carbon (PAC), is produced that can be brought to application at wastewater treatment plant level for the removal of micropollutants in a powdered activated carbon-activated sludge (PAC-AS) system. This excess carbon derived as a by-product from the reactivation process in a waterworks was applied directly into the activated sludge tank and has been elevated in this study by monitoring the removal efficiencies for benzotriazole, carbamazepine, diclofenac, metoprolol and sulfamethoxazole in the effluent of a semi-technical wastewater treatment plant of 39 m3. A simulation-derived sampling strategy was applied to optimize the recovery rates of the micropollutants. Flow-proportional, 72-hour composite sampling was considered best. The elimination rates obtained for a 10 g PAC·m-3 dosage were 73% for benzotriazole, 59% for carbamazepine, 60% for diclofenac, 67% for metoprolol and 48% for sulfamethoxazole. The obtained results underline the importance of appropriate sampling strategies, which can be derived from hydraulic modeling.


Subject(s)
Charcoal/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Carbon/analysis
4.
Water Sci Technol ; 71(2): 220-6, 2015.
Article in English | MEDLINE | ID: mdl-25633945

ABSTRACT

Photoreactivation of ultraviolet (UV)-disinfected wastewater of different qualities was experimentally assessed. Photoreactivation ability of secondary effluent and microstrained inflow was analyzed in different samples of 50 mL (Petri dish) and 7,000 mL volume to describe open channel effluent situations of wastewater treatment plants in a more realistic approach. The small sample of secondary effluent revealed a total log10 inactivation of 1.8 units and the small sample of microstrained inflow a total log10 inactivation of 3.2, with an applied UV-254 fluence of 84 and 253 J/m², respectively. Maximum net photoreactivation for secondary effluent and microstrained inflow was in the order of 1.2 log10 and 0.37 log10 units, respectively, for both sample sizes. However, significantly faster photoreactivation performance was generally determined for small sample volumes. The photoreactivation processes were completely compensated for by solar disinfection within a 120 min exposure time. Solar disinfection processes were negligible in the larger sample volumes of microstrained inflow. For municipal wastewater treatment systems with open channel effluents, it is essential to take into consideration the dependence of solar UV-365 fluence rate on water depth and wastewater characteristics.


Subject(s)
Disinfection/methods , Escherichia coli/radiation effects , Wastewater/microbiology , Disinfection/instrumentation , Escherichia coli/growth & development , Microbial Viability/radiation effects , Solar Energy , Ultraviolet Rays , Wastewater/chemistry , Water Microbiology
5.
Water Sci Technol ; 58(6): 1199-206, 2008.
Article in English | MEDLINE | ID: mdl-18845857

ABSTRACT

The biological wastewater treatment using aerobic granular sludge is a new and very promising method, which is predominantly used in SBR reactors which have higher volumetric conversion rates than methods with flocculent sludge. With suitable reactor operation, flocculent biomass will accumulate into globular aggregates, due to the creation of increased substrate gradients and high shearing power degrees. In the research project described in this paper dairy wastewater with a high particle load was treated with aerobic granular sludge in an SBR reactor. A dynamic mathematical model was developed describing COD and nitrogen removal as well as typical biofilm processes such as diffusion or substrate limitation in greater detail. The calibrated model was excellently able to reproduce the measuring data despite of strongly varying wastewater composition. In this paper scenario calculations with a calibrated biokinetic model were executed to evaluate the effect of different operation strategies for the granular SBR. Modeling results showed that the granules with an average diameter of 2.5 mm had an aerobic layer in between 65-95 microm. Density of the granules was 40 kgVSS/m3. Results revealed amongst others optimal operation conditions for nitrogen removal with oxygen concentrations below 5 gO2/m3. Lower oxygen concentrations led to thinner aerobic but thicker anoxic granular layers with higher nitrate removal efficiencies. Total SBR-cycle times should be in between 360-480 minutes. Reduction of the cycle time from 480 to 360 minutes with a 50% higher throughput resulted in an increase of peak nitrogen effluent concentrations by 40%. Considering biochemical processes the volumetric loading rate for dairy wastewater should be higher than 4.5 kgCOD/(m3*d). Higher COD input load with a COD-based volumetric loading rate of 9.0 kgCOD/(m3*d) nearly led to complete nitrogen removal. Under different operational conditions average nitrification rates up to 5 gNH/(m3*h) and denitrification rates up to 3.7 gNO/(m3*h) were achieved.


Subject(s)
Bioreactors/microbiology , Dairy Products , Sewage/microbiology , Waste Disposal, Fluid/methods , Aerobiosis , Animals , Industrial Waste , Models, Theoretical
6.
Water Sci Technol ; 58(1): 67-72, 2008.
Article in English | MEDLINE | ID: mdl-18653938

ABSTRACT

Anaerobic processes are widely used for treatment of both municipal and industrial wastewater as well as agricultural substrates. In contrast to the aerobic methods, they are frequently more cost-efficient, they have a lower surplus sludge production, and the reactors can be run with higher volumetric loads and thus smaller volumes. In the paper presented both experimental data and the application of the Anaerobic Digestion Model No. 1 for agricultural substrate from livestock farming will be described. A 3,500 L reactor with mesophilic operation and loaded with cattle manure was examined with respect to its COD degradation, gas production, and gas composition. Results revealed a reduction of 30-35% COD and a biogas production of 287 L(Biogas)/kg(VS) when operated with a specific loading rate of 3.6 kg(VS)/(m(3).d).After calibration of the ADM 1, which was based predominantly on the acetate uptake rate (k(ac.m)=3.6 g/(g.d)), the disintegration constant (k(Dis)=0.05 d(-1)) and the exact determination of the influent COD fractions contained in the agricultural substrate, it was possible to simulate the measured data of the plant in excellent quality. For future application of the ADM 1 as part of control strategies a sensitivity analysis was carried out. The analysis based on the SVM slope technique has been done to identify highly sensitive biochemical parameters. These are, amongst others, the acetate uptake rate, the disintegration constant, the biomass decay rates and the half saturation constant for ammonia inhibition. Sensitivity analysis of the inflow COD fractions (proteins, carbohydrates, lipids and inert) showed the necessity of detailed measurements for the prediction of the gas flow and composition as well as for prognosis of inhibitions in the anaerobic process. For cattle manure especially the fractions of inert material and carbohydrates should be observed carefully. Due to the high content of NH(4)-N in manure the protein fraction is not as sensitive as the two mentioned above.


Subject(s)
Agriculture/methods , Sewage/chemistry , Acetates , Agriculture/standards , Amino Acids/analysis , Ammonia/analysis , Anaerobiosis , Animal Husbandry/methods , Animal Husbandry/standards , Animals , Bioreactors , Fatty Acids, Nonesterified/analysis , Fermentation , Gases/analysis , Germany , Hydrogen-Ion Concentration , Kinetics , Manure/analysis , Proteins/analysis , Sensitivity and Specificity
7.
Water Sci Technol ; 56(10): 19-28, 2007.
Article in English | MEDLINE | ID: mdl-18048973

ABSTRACT

Thermophilic anaerobic digestion in compact systems can be an economical and ecological reasonable decentralised process technique, especially for rural areas. Thermophilic process conditions are important for a sufficient removal of pathogens. The high energy demand, however, can make such systems unfavourable in terms of energy costs. This is the case when low concentrated wastewater is treated or the system is operated at low ambient temperatures. In this paper we present experimental results of a compact thermophilic anaerobic system obtained with fluorescent in situ hybridisation (FISH) analysis and mathematical simulation. The system was operated with faecal sludge for a period of 135 days and with a model substrate consisting of forage and cellulose for a period of 60 days. The change in the microbial community due to the two different substrates treated could be well observed by the FISH analysis. The Anaerobic Digestion Model no. 1 (ADM1) was used to evaluate system performance at different temperature conditions. The model was extended to contribute to decreased methanogenic activity at lower temperatures and was used to calculate energy production. A model was developed to calculate the major parts of energy consumed by the digester itself at different temperature conditions. It was demonstrated by the simulation study that a reduction of the process temperature can lead to higher net energy yield. The simulation study additionally showed that the effect of temperature on the energy yield is higher when a substrate is treated with high protein content.


Subject(s)
Bioreactors/microbiology , Anaerobiosis , Colony Count, Microbial , Computer Simulation , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Models, Biological , Sewage , Temperature
8.
Water Sci Technol ; 55(7): 95-102, 2007.
Article in English | MEDLINE | ID: mdl-17506425

ABSTRACT

Poor sanitation and insufficient disposal of sewage and faeces are primarily responsible for water associated health problems in developing countries. Domestic sewage and faeces are prevalently discharged into surface waters which are used by the inhabitants as a source for drinking water. This paper presents a decentralized anaerobic process technique for handling of such domestic organic waste. Such an efficient and compact system for treating faeces and food waste may be of great benefit for developing countries. Besides a stable biogas production for energy generation, the reduction of bacterial pathogens is of particular importance. In our research we investigated the removal capacity of the reactor concerning pathogens, which has been operated under thermophilic conditions. Faecal coliforms and intestinal enterococci have been detected as indicator organisms for bacterial pathogens. By the multiple regression analysis technique an empirical mathematical model has been developed. The model shows a high correlation between removal efficiency and both, hydraulic retention time (HRT) and temperature. By this model an optimized HRT for defined bacterial pathogens effluent standards can be easily calculated. Thus, hygiene potential can be evaluated along with economic aspects. In this paper not only results for describing the hygiene potential of a thermophilic anaerobic bioreactor are presented, but also an exemplary method to draw the right conclusions out of biological tests with the aid of mathematical tools.


Subject(s)
Bioreactors , Empirical Research , Feces/microbiology , Hygiene , Models, Theoretical , Temperature , Anaerobiosis , Enterobacteriaceae/isolation & purification , Humans , Time Factors
9.
Water Sci Technol ; 47(11): 211-8, 2003.
Article in English | MEDLINE | ID: mdl-12906292

ABSTRACT

In 1999, the Activated Sludge Model No. 3 by the IWA Task Group on Mathematical Modelling for the Design and Operation of Biological Wastewater Treatment was presented. The model is used for the simulation of nitrogen removal. The simulations in this paper were done on the basis of a new calibration of the ASM 3 by Koch et al., with the easily degradable COD measured by respiration. For modelling of EBPR the BioP-Module of Rieger et al., was used. Six German wastewater treatment plants were simulated during this research to test the existing set of parameters of the models on various large scale plants. It was shown that changes for nitrification and enhanced biological phosphorus removal in the set of biological parameters were necessary. Sensible parameters and recommended values are presented in this article. Apart from the values of the changed biological parameters, we will in our examination discuss the modelling of the different activated sludge systems and the influent fractioning of the COD. Two plants with simultaneous denitrification in the recirculation ditch (EBPR) are simulated, one with preliminary dentrification, one with intermittent denitrification (EBPR), one with cascade denitrification (EBPR), and one pilot plant according to the Johannesburg-process (EBPR) which was simulated over a period of three months.


Subject(s)
Models, Theoretical , Nitrogen/isolation & purification , Nitrogen/metabolism , Waste Disposal, Fluid/methods , Water Purification/methods , Bioreactors , Calibration , Germany , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL