Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
World J Urol ; 41(8): 2091-2097, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37528288

ABSTRACT

PURPOSE: Determining the frequency and distribution of pathogenic germline variants (PGVs) in Austrian prostate cancer (PCa) patients and to assess the accuracy of different clinical risk scores to correctly predict PGVs. METHODS: This cross-sectional study included 313 men with advanced PCa. A comprehensive personal and family history was obtained based on predefined questionnaires. Germline DNA sequencing was performed between 2019 and 2021 irrespective of family history, metastatic or castration status or age at diagnosis. Clinical risk scores for hereditary cancer syndromes were evaluated and a PCa-specific score was developed to assess the presence of PGVs. RESULTS: PGV presence was associated with metastasis (p = 0.047) and castration resistance (p = 0.011), but not with personal cancer history or with relatives with any type of cancer. Clinical risk scores (Manchester score, PREMM5 score, Amsterdam II criteria or Johns Hopkins criteria) showed low sensitivities (3.3-20%) for assessing the probability of PGV presence. A score specifically designed for PCa patients stratifying patients into low- or high-risk regarding PGV probability, correctly classified all PGV carriers as high-risk, whereas a third of PCa patients without PGVs was classified as low risk of the presence of PGVs. CONCLUSION: Application of common clinical risk scores based on family history are not suitable to identify PCa patients with high PGV probabilities. A PCa-specific score stratified PCa patients into low- or high-risk of PGV presence with sufficient accuracy, and germline DNA sequencing may be omitted in patients with a low score. Further studies are needed to evaluate the score.


Subject(s)
Prostatic Neoplasms , Male , Humans , Cross-Sectional Studies , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Risk Factors , Germ Cells/pathology , Austria , Genetic Predisposition to Disease
2.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545680

ABSTRACT

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Subject(s)
Brain/embryology , Brain/metabolism , DNA-Binding Proteins/genetics , Genes, Essential/genetics , Intellectual Disability/genetics , Minor Histocompatibility Antigens/genetics , Mutation/genetics , RNA Splicing/genetics , Animals , Brain/abnormalities , Brain/pathology , DNA-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Developmental Disabilities/physiopathology , Eye Abnormalities/genetics , Female , Haploinsufficiency/genetics , Head/abnormalities , Heterozygote , Humans , Intellectual Disability/pathology , Intellectual Disability/physiopathology , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Minor Histocompatibility Antigens/analysis , Minor Histocompatibility Antigens/metabolism , Pedigree , RNA, Messenger/analysis , Spine/abnormalities , Syndrome , Zebrafish/abnormalities , Zebrafish/embryology , Zebrafish/genetics
3.
Am J Pathol ; 183(1): 195-210, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23684790

ABSTRACT

An intriguing finding about the gene encoding methyl-CpG binding protein 2 (MeCP2) is that the loss-of-function mutations cause Rett syndrome and duplication (gain-of-function) of MECP2 leads to another neurological disorder termed MECP2 duplication syndrome. To ensure proper neurodevelopment, a precise regulation of MeCP2 expression is critical, and any gain or loss of MeCP2 over a narrow threshold level may lead to postnatal neurological impairment. To evaluate MeCP2 dosage effects, we generated Mecp2(WT_EGFP) transgenic (TG) mouse in which MeCP2 (endogenous plus TG) is mildly overexpressed (approximately 1.5×). The TG MeCP2(WT_EGFP) fusion protein is functionally active, as cross breeding of these mice with Mecp2 knockout mice led to alleviation of major phenotypes in the null mutant mice, including premature lethality. To characterize the Mecp2(WT_EGFP) mouse model, we performed an extensive battery of behavioral tests, which revealed that these mice manifest increased aggressiveness and higher pentylenetetrazole (PTZ)-induced seizure propensity. Evaluation of neuronal parameters revealed a reduction in the number of tertiary branching sites and increased spine density in Mecp2(WT_EGFP) transgenic (TG) neurons. Treatment of TG neurons with epileptogenic compound-PTZ led to a marked increase in amplitude and frequency of calcium spikes. Based on our ex vivo and in vivo data, we conclude that epileptic seizures are manifested as the first symptom when MeCP2 is mildly overexpressed in mice.


Subject(s)
Methyl-CpG-Binding Protein 2/metabolism , Seizures/metabolism , Aggression/physiology , Animals , Behavior, Animal/physiology , Biomarkers/metabolism , Blotting, Western , Calcium/metabolism , Female , Immunohistochemistry , Logistic Models , Male , Mice , Mice, Transgenic , Neuropsychological Tests , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
4.
Clin Case Rep ; 10(12): e6573, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36518920

ABSTRACT

We present an adolescent girl with a highly stenotic ascending aortic conduit of her former during infancy corrected giant aneurysm. Genetic testing determined autosomal recessive cutis laxa type-Ib as the underlying connective tissue disorder. Re-do valve sparing root and arch replacement gained excellent restoration of the aorta; 1-year-follow-up was uneventful.

5.
Am J Med Genet A ; 143A(10): 1091-9, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17431920

ABSTRACT

We report on a 2 7/12-year-old girl who was referred to us because of psychomotor developmental delay. She is the second child of healthy, non-consanguineous parents. Pregnancy and birth were uneventful. Milestones of motor development were delayed: grasping at 6 months, sitting without support at 16 months, crawling at 16 months and walking at 2 4/12 years of age. She spoke about five words and followed simple instructions. Banding cytogenetics revealed a numerically and structurally normal female karyotype of 46,XX. By quantitative real-time PCR analysis of all subtelomeric regions, a partial trisomy of the subtelomeric region of 19q could be detected. This result was confirmed by FISH-analysis with a subtelomeric probe for 19q. The additional material of chromosome 19q was localized on chromosome 6q. However, a deletion of the subtelomeric region of 6q could not be detected with a subtelomeric FISH probe for 6q. Conventional cytogenetic analysis as well as FISH with subtelomeric probes for 19q and 6q showed normal results in the parents. The detected chromosomal aberration probably occurred de novo. The clinical features are very likely to be caused solely by the partial trisomy 19q.


Subject(s)
Chromosomes, Human, Pair 19 , Developmental Disabilities/genetics , Facial Asymmetry/genetics , Muscle Hypotonia/genetics , Trisomy/genetics , Child, Preschool , Chromosome Banding , Female , Humans , In Situ Hybridization, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL