Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Pathog ; 19(9): e1011658, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747879

ABSTRACT

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.


Subject(s)
Interleukin-4 , Macrophage Activation , Animals , Mice , Choline/metabolism , Cytokines/metabolism , Interleukin-4/metabolism , Macrophages , Mice, Inbred C57BL , Up-Regulation
2.
Annu Rev Neurosci ; 38: 25-46, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-25782970

ABSTRACT

The brain, which represents 2% of body mass but consumes 20% of body energy at rest, has a limited capacity to store energy and is therefore highly dependent on oxygen and glucose supply from the blood stream. Normal functioning of neural circuits thus relies on adequate matching between metabolic needs and blood supply. Moreover, not only does the brain need to be densely vascularized, it also requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for synaptic transmission and neuronal function. In this review, we focus on three major factors that ensure optimal brain perfusion and function: the patterning of vascular networks to efficiently deliver blood and nutrients, the function of the blood-brain barrier to maintain brain homeostasis, and the regulation of cerebral blood flow to adequately couple energy supply to neural function.


Subject(s)
Brain/blood supply , Brain/cytology , Neurons/physiology , Animals , Blood-Brain Barrier/physiology , Brain/physiology , Homeostasis/physiology , Humans
3.
Nat Methods ; 17(2): 232-239, 2020 02.
Article in English | MEDLINE | ID: mdl-31768061

ABSTRACT

Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations or in vivo, due to limitations in currently available tools for measuring autophagy induction. Here, we describe a method to monitor autophagy by measuring phosphorylation of the protein ATG16L1. We developed and characterized a monoclonal antibody that can detect phospho-ATG16L1 endogenously in mammalian cells. Importantly, phospho-ATG16L1 is only present on newly forming autophagosomes. Therefore, its levels are not affected by prolonged stress or late-stage autophagy blocks, which can confound autophagy analysis. Moreover, we show that ATG16L1 phosphorylation is a conserved signaling pathway activated by numerous autophagy-inducing stressors. The described antibody is suitable for western blot, immunofluorescence and immunohistochemistry, and measured phospho-ATG16L1 levels directly correspond to autophagy rates. Taken together, this phospho-antibody represents an exciting tool to study autophagy induction.


Subject(s)
Antibodies/immunology , Autophagy , Animals , Carrier Proteins/metabolism , Humans , Phosphorylation
4.
Neurobiol Dis ; 137: 104756, 2020 04.
Article in English | MEDLINE | ID: mdl-31978604

ABSTRACT

Vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH) and memory deficits, and often occurs concurrently with metabolic syndrome (MetS). Despite their common occurrence, it is unknown whether CCH and MetS act synergistically to exacerbate VCI-associated pathology. Here, using male Sprague-Dawley rats, we examined the effects of a clinically relevant model of adolescent-onset MetS and adult-onset CCH on neuro-vascular outcomes, combining a cafeteria diet with a 2-vessel occlusion (2VO) model. Using longitudinal imaging, histology, and behavioural assessments, we identified several features of MetS and CCH including reduced cerebral blood volume, white matter atrophy, alterations in hippocampal cell density, and memory impairment. Furthermore, we identified a number of significant associations, potentially predictive of MetS and pathophysiological outcomes. White matter volume was positively correlated to HDL cholesterol; hippocampal cell density was negatively correlated to fasted blood glucose; cerebral blood flow and volume was negatively predicted by the combination of 2VO surgery and increased fasted blood glucose. These results emphasize the importance of including comorbid conditions when modeling VCI, and they outline a highly translational preclinical model that could be used to investigate potential interventions to mitigate VCI-associated pathology and cognitive decline.


Subject(s)
Brain Ischemia/pathology , Cognition/physiology , Metabolic Syndrome/pathology , Perfusion , Animals , Brain Ischemia/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Metabolic Syndrome/physiopathology , Rats, Sprague-Dawley
5.
Nature ; 509(7501): 507-11, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24828040

ABSTRACT

The central nervous system (CNS) requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for neural function. This environment is maintained by the 'blood-brain barrier' (BBB), which is composed of blood vessels whose endothelial cells display specialized tight junctions and extremely low rates of transcellular vesicular transport (transcytosis). In concert with pericytes and astrocytes, this unique brain endothelial physiological barrier seals the CNS and controls substance influx and efflux. Although BBB breakdown has recently been associated with initiation and perpetuation of various neurological disorders, an intact BBB is a major obstacle for drug delivery to the CNS. A limited understanding of the molecular mechanisms that control BBB formation has hindered our ability to manipulate the BBB in disease and therapy. Here we identify mechanisms governing the establishment of a functional BBB. First, using a novel tracer-injection method for embryos, we demonstrate spatiotemporal developmental profiles of BBB functionality and find that the mouse BBB becomes functional at embryonic day 15.5 (E15.5). We then screen for BBB-specific genes expressed during BBB formation, and find that major facilitator super family domain containing 2a (Mfsd2a) is selectively expressed in BBB-containing blood vessels in the CNS. Genetic ablation of Mfsd2a results in a leaky BBB from embryonic stages through to adulthood, but the normal patterning of vascular networks is maintained. Electron microscopy examination reveals a dramatic increase in CNS-endothelial-cell vesicular transcytosis in Mfsd2a(-/-) mice, without obvious tight-junction defects. Finally we show that Mfsd2a endothelial expression is regulated by pericytes to facilitate BBB integrity. These findings identify Mfsd2a as a key regulator of BBB function that may act by suppressing transcytosis in CNS endothelial cells. Furthermore, our findings may aid in efforts to develop therapeutic approaches for CNS drug delivery.


Subject(s)
Blood-Brain Barrier/embryology , Blood-Brain Barrier/physiology , Membrane Transport Proteins/metabolism , Animals , Blood Vessels/metabolism , Cerebral Cortex/blood supply , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Drug Delivery Systems , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Male , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice , Neovascularization, Physiologic , Pericytes/metabolism , Spatio-Temporal Analysis , Symporters , Tight Junctions/metabolism , Tight Junctions/pathology , Transcytosis
6.
Ann Neurol ; 84(3): 409-423, 2018 09.
Article in English | MEDLINE | ID: mdl-30014540

ABSTRACT

OBJECTIVE: Cortical spreading depolarizations (CSDs) are intense and ubiquitous depolarization waves relevant for the pathophysiology of migraine and brain injury. CSDs disrupt the blood-brain barrier (BBB), but the mechanisms are unknown. METHODS: A total of six CSDs were evoked over 1 hour by topical application of 300 mM of KCl or optogenetically with 470 nm (blue) LED over the right hemisphere in anesthetized mice (C57BL/6 J wild type, Thy1-ChR2-YFP line 18, and cav-1-/- ). BBB disruption was assessed by Evans blue (2% EB, 3 ml/kg, intra-arterial) or dextran (200 mg/kg, fluorescein, 70,000 MW, intra-arterial) extravasation in parietotemporal cortex at 3 to 24 hours after CSD. Endothelial cell ultrastructure was examined using transmission electron microscopy 0 to 24 hours after the same CSD protocol in order to assess vesicular trafficking, endothelial tight junctions, and pericyte integrity. Mice were treated with vehicle, isoform nonselective rho-associated kinase (ROCK) inhibitor fasudil (10 mg/kg, intraperitoneally 30 minutes before CSD), or ROCK-2 selective inhibitor KD025 (200 mg/kg, per oral twice-daily for 5 doses before CSD). RESULTS: We show that CSD-induced BBB opening to water and large molecules is mediated by increased endothelial transcytosis starting between 3 and 6 hours and lasting approximately 24 hours. Endothelial tight junctions, pericytes, and basement membrane remain preserved after CSDs. Moreover, we show that CSD-induced BBB disruption is exclusively caveolin-1-dependent and requires rho-kinase 2 activity. Importantly, hyperoxia failed to prevent CSD-induced BBB breakdown, suggesting that the latter is independent of tissue hypoxia. INTERPRETATION: Our data elucidate the mechanisms by which CSDs lead to transient BBB disruption, with diagnostic and therapeutic implications for migraine and brain injury.


Subject(s)
Caveolin 1/metabolism , Endothelium/metabolism , Pericytes/metabolism , Transcytosis/physiology , Animals , Blood-Brain Barrier/metabolism , Cortical Spreading Depression/genetics , Cortical Spreading Depression/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Migraine Disorders/metabolism , Tight Junctions/metabolism
7.
Clin Sci (Lond) ; 132(13): 1453-1470, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29739827

ABSTRACT

Neuronal ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that maintains intracellular ubiquitin pools and promotes axonal transport. Uchl1 deletion in mice leads to progressive axonal degeneration, affecting the dorsal root ganglion that harbors axons emanating to the kidney. Innervation is a crucial regulator of renal hemodynamics, though the contribution of neuronal UCHL1 to this is unclear. Immunofluorescence revealed significant neuronal UCHL1 expression in mouse kidney, including periglomerular axons. Glomerular filtration rate trended higher in 6-week-old Uchl1-/- mice, and by 12 weeks of age, these displayed significant glomerular hyperfiltration, coincident with the onset of neurodegeneration. Angiotensin converting enzyme inhibition had no effect on glomerular filtration rate of Uchl1-/- mice indicating that the renin-angiotensin system does not contribute to the observed hyperfiltration. DCE-MRI revealed increased cortical renal blood flow in Uchl1-/- mice, suggesting that hyperfiltration results from afferent arteriole dilation. Nonetheless, hyperglycemia, cyclooxygenase-2, and nitric oxide synthases were ruled out as sources of hyperfiltration in Uchl1-/- mice as glomerular filtration rate remained unchanged following insulin treatment, and cyclooxygenase-2 and nitric oxide synthase inhibition. Finally, renal nerve dysfunction in Uchl1-/- mice is suggested given increased renal nerve arborization, decreased urinary norepinephrine, and impaired vascular reactivity. Uchl1-deleted mice demonstrate glomerular hyperfiltration associated with renal neuronal dysfunction, suggesting that neuronal UCHL1 plays a crucial role in regulating renal hemodynamics.


Subject(s)
Glomerular Filtration Rate/physiology , Neurodegenerative Diseases/physiopathology , Ubiquitin Thiolesterase/physiology , Animals , Arterioles/physiopathology , Cyclooxygenase 2/metabolism , Glucose Intolerance/physiopathology , Kidney/innervation , Kidney/metabolism , Mice, Knockout , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Nitric Oxide Synthase/metabolism , Renal Artery/physiopathology , Renal Circulation/physiology , Renin-Angiotensin System/physiology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Vascular Resistance/physiology
8.
Pattern Recognit ; 63: 710-718, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28566796

ABSTRACT

To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.

9.
Cereb Cortex ; 25(5): 1163-75, 2015 May.
Article in English | MEDLINE | ID: mdl-24304503

ABSTRACT

The role of the father in psycho-affective development is indispensable. Yet, the neurobehavioral effects of paternal deprivation (PD) are poorly understood. Here, we examined the behavioral consequences of PD in the California mouse, a species displaying monogamous bonding and biparental care, and assessed its impact on dopamine (DA), serotonin (5-HT), and glutamate (GLU) transmission in the medial prefrontal cortex (mPFC). In adult males, deficits in social interaction were observed, when a father-deprived (PD) mouse was matched with a PD partner. In adult females, deficits were observed when matching a PD animal with a non-PD control, and when matching 2 PD animals. PD also increased aggression in females. Behavioral abnormalities in PD females were associated with a sensitized response to the locomotor-activating effect of amphetamine. Following immunocytochemical demonstration of DA, 5-HT, and GLU innervations in the mPFC, we employed in vivo electrophysiology and microiontophoresis, and found that PD attenuated the basal activity of low-spiking pyramidal neurons in females. PD decreased pyramidal responses to DA in females, while enhancing responses to NMDA in both sexes. We thus demonstrate that, during critical neurodevelopmental periods, PD leads to sex-dependent abnormalities in social and reward-related behaviors that are associated with disturbances in cortical DA and GLU neurotransmission.


Subject(s)
Dopamine/metabolism , Glutamic Acid/metabolism , Paternal Deprivation , Prefrontal Cortex/physiology , Social Behavior , Synapses/metabolism , Amphetamine/pharmacology , Animals , Behavior, Animal/drug effects , Female , Male , Mice , Mice, Inbred Strains , Motor Activity/drug effects , N-Methylaspartate/pharmacology , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Reward , Serotonin/metabolism , Sex Factors , Synapses/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
10.
J Pineal Res ; 58(4): 397-417, 2015 May.
Article in English | MEDLINE | ID: mdl-25726952

ABSTRACT

The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G-protein-coupled receptors, MT1 and MT2 , remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.


Subject(s)
Brain/anatomy & histology , Brain/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Blotting, Western , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley
11.
J Neurosci ; 33(8): 3390-401, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23426667

ABSTRACT

The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and ß-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.


Subject(s)
Cerebral Cortex/physiology , Cerebrovascular Circulation/physiology , Locus Coeruleus/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Blood-Brain Barrier/cytology , Blood-Brain Barrier/physiology , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Locus Coeruleus/blood supply , Locus Coeruleus/cytology , Male , Nerve Net/blood supply , Nerve Net/cytology , Rats , Rats, Sprague-Dawley
12.
J Neurochem ; 131(6): 778-90, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25111043

ABSTRACT

Heme oxygenase-1 (HO-1) encoded by the HMOX1 gene is a 32-kDa stress protein that catabolizes heme to biliverdin, free iron, and carbon monoxide (CO). Glial HO-1 is over-expressed in the CNS of subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The HMOX1 gene is exquisitely sensitive to oxidative stress and is induced in brain and other tissues in various models of disease and trauma. Induction of the glial HMOX1 gene may lead to pathological brain iron deposition, intracellular oxidative damage, and bioenergetic failure in AD and other human CNS disorders such as PD and MS. Therefore, targeted suppression of glial HO-1 hyperactivity may prove to be a rational and effective therapeutic intervention in AD and related neurodegenerative disorders. In this study, we report the effects of QC-47, QC-56, and OB-28, novel azole-based competitive and reversible inhibitors of HO-1, on oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. We also report the effect of OB-28 on the behavior and neuropathology of APP(swe)/PS1(∆E9) mice. OB-28 was found to reduce oxidative damage to whole-cell and mitochondrial compartments in rat astrocytes transfected with the HMOX1 gene. Moreover, OB-28 was found to significantly counter behavioral deficits and neuropathological alterations in APP(swe)/PS1(∆E9) mice. Attenuation of AD-associated behavioral deficits and neuropathological changes suggests that HO-1 may be a promising target for neuroprotective intervention in AD and other neurodegenerative diseases. We propose that the targeted suppression of glial heme oxygenase-1 (HO-1) hyperactivity may prove to be a rational and effective therapeutic intervention in Alzheimer's disease (AD) and related neurodegenerative disorders. We report attenuation by a selective HO-1 inhibitor of oxidative damage to whole-cell and mitochondrial compartments in astrocytes in vitro and amelioration of behavioral anomalies in a transgenic mouse model of AD.


Subject(s)
Alzheimer Disease/metabolism , Astrocytes/drug effects , Azoles/pharmacology , Heme Oxygenase-1/antagonists & inhibitors , Mitochondria/drug effects , Aging/metabolism , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Heme Oxygenase-1/genetics , Humans , Male , Mice , Mice, Transgenic , Mitochondria/metabolism , Neuroglia/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
13.
Neurosci Lett ; 837: 137904, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39029613

ABSTRACT

Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.


Subject(s)
Autistic Disorder , Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 16 , Disease Models, Animal , rho-Associated Kinases , Animals , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Chromosomes, Human, Pair 16/genetics , Mice , Autistic Disorder/genetics , Chromosome Disorders/genetics , Heterozygote , Recognition, Psychology/physiology , Endothelial Cells/metabolism , Haploinsufficiency , Male , Mice, Inbred C57BL , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics
14.
Article in English | MEDLINE | ID: mdl-38951020

ABSTRACT

Blood vessels are critical to deliver oxygen and nutrients to tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood-brain barrier (BBB), which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and protects the neural tissue from toxins and pathogens, and alterations of this barrier are important components of the pathogenesis and progression of various neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the brain endothelial cells (ECs) that form the walls of the blood vessels. These properties are regulated by interactions between different vascular, perivascular, immune, and neural cells. Understanding how these cell populations interact to regulate barrier properties is essential for understanding how the brain functions in both health and disease contexts.

15.
eNeuro ; 11(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38164600

ABSTRACT

Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.


Subject(s)
Gonadal Steroid Hormones , Stroke , Mice , Female , Male , Animals , Humans , Gonadal Steroid Hormones/pharmacology , Gonadal Steroid Hormones/physiology , Ovariectomy , Phenotype , Sex Characteristics , Cerebrovascular Circulation
16.
Neurosci Insights ; 19: 26331055241235921, 2024.
Article in English | MEDLINE | ID: mdl-38476695

ABSTRACT

Brain development and function are highly reliant on adequate establishment and maintenance of vascular networks. Early impairments in vascular health can impact brain maturation and energy metabolism, which may lead to neurodevelopmental anomalies. Our recent work not only provides novel insights into the development of cerebrovascular networks but also emphasizes the importance of their well-being for proper brain maturation. In particular, we have demonstrated that endothelial dysfunction in autism spectrum disorders (ASD) mouse models is causally related to altered behavior and brain metabolism. In the prenatal human brain, vascular cells change metabolic states in the second trimester. Such findings highlight the need to identify new cellular and molecular players in neurodevelopmental disorders, raising awareness about the importance of a healthy vasculature for brain development. It is thus essential to shift the mostly neuronal point of view in research on ASD and other neurodevelopmental disorders to also include vascular and metabolic features.

17.
J Neuroinflammation ; 10: 57, 2013 May 04.
Article in English | MEDLINE | ID: mdl-23642031

ABSTRACT

BACKGROUND: Recent evidence suggests that the inducible kinin B1 receptor (B1R) contributes to pathogenic neuroinflammation induced by amyloid-beta (Aß) peptide. The present study aims at identifying the cellular distribution and potentially detrimental role of B1R on cognitive and cerebrovascular functions in a mouse model of Alzheimer's disease (AD). METHODS: Transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APPSwe,Ind, line J20) were treated with a selective and brain penetrant B1R antagonist (SSR240612, 10 mg/kg/day for 5 or 10 weeks) or vehicle. The impact of B1R blockade was measured on i) spatial learning and memory performance in the Morris water maze, ii) cerebral blood flow (CBF) responses to sensory stimulation using laser Doppler flowmetry, and iii) reactivity of isolated cerebral arteries using online videomicroscopy. Aß burden was quantified by ELISA and immunostaining, while other AD landmarks were measured by western blot and immunohistochemistry. RESULTS: B1R protein levels were increased in APP mouse hippocampus and, prominently, in reactive astrocytes surrounding Aß plaques. In APP mice, B1R antagonism with SSR240612 improved spatial learning, memory and normalized protein levels of the memory-related early gene Egr-1 in the dentate gyrus of the hippocampus. B1R antagonism restored sensory-evoked CBF responses, endothelium-dependent dilations, and normalized cerebrovascular protein levels of endothelial nitric oxide synthase and B2R. In addition, SSR240612 reduced (approximately 50%) microglial, but not astroglial, activation, brain levels of soluble Aß1-42, diffuse and dense-core Aß plaques, and it increased protein levels of the Aß brain efflux transporter lipoprotein receptor-related protein-1 in cerebral microvessels. CONCLUSION: These findings show a selective upregulation of astroglial B1R in the APP mouse brain, and the capacity of the B1R antagonist to abrogate amyloidosis, cerebrovascular and memory deficits. Collectively, these findings provide convincing evidence for a role of B1R in AD pathogenesis.


Subject(s)
Alzheimer Disease/drug therapy , Bradykinin B1 Receptor Antagonists , Cerebrovascular Circulation/drug effects , Cognition/drug effects , Dioxoles/therapeutic use , Sulfonamides/therapeutic use , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amino Acid Sequence , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/metabolism , Blotting, Western , Early Growth Response Protein 1/metabolism , Humans , Immunohistochemistry , Laser-Doppler Flowmetry , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Matrix Metalloproteinase 9/metabolism , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Plaque, Amyloid/drug therapy , Plaque, Amyloid/pathology , Receptor, Bradykinin B1/metabolism
18.
Int Rev Neurobiol ; 173: 67-113, 2023.
Article in English | MEDLINE | ID: mdl-37993180

ABSTRACT

Neurodevelopmental disorders (NDDs) affect a significant portion of the global population and have a substantial social and economic impact worldwide. Most NDDs manifest in early childhood and are characterized by deficits in cognition, communication, social interaction and motor control. Due to a limited understanding of the etiology of NDDs, current treatment options primarily focus on symptom management rather than on curative solutions. Moreover, research on NDDs is problematic due to its reliance on a neurocentric approach. However, recent studies are broadening the scope of research on NDDs, to include dysregulations within a diverse network of brain cell types, including vascular and glial cells. This review aims to summarize studies from the past few decades on potential new contributions to the etiology of NDDs, with a special focus on metabolic signatures of various brain cells. In particular, we aim to convey how the metabolic functions are intimately linked to the onset and/or progression of common NDDs such as autism spectrum disorders, fragile X syndrome, Rett syndrome and Down syndrome.


Subject(s)
Autism Spectrum Disorder , Neurodevelopmental Disorders , Child, Preschool , Humans , Brain , Cognition
19.
Cell Rep ; 42(5): 112485, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37149866

ABSTRACT

Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses.


Subject(s)
Endothelial Cells , Haploinsufficiency , Mice , Animals , Endothelial Cells/metabolism , Organelle Biogenesis , Chromosome Deletion , Brain
20.
Nat Commun ; 14(1): 4965, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587100

ABSTRACT

Astrocytes are intimately linked with brain blood vessels, an essential relationship for neuronal function. However, astroglial factors driving these physical and functional associations during postnatal brain development have yet to be identified. By characterizing structural and transcriptional changes in mouse cortical astrocytes during the first two postnatal weeks, we find that high-mobility group box 1 (Hmgb1), normally upregulated with injury and involved in adult cerebrovascular repair, is highly expressed in astrocytes at birth and then decreases rapidly. Astrocyte-selective ablation of Hmgb1 at birth affects astrocyte morphology and endfoot placement, alters distribution of endfoot proteins connexin43 and aquaporin-4, induces transcriptional changes in astrocytes related to cytoskeleton remodeling, and profoundly disrupts endothelial ultrastructure. While lack of astroglial Hmgb1 does not affect the blood-brain barrier or angiogenesis postnatally, it impairs neurovascular coupling and behavior in adult mice. These findings identify astroglial Hmgb1 as an important player in postnatal gliovascular maturation.


Subject(s)
Astrocytes , Blood-Brain Barrier , HMGB1 Protein , Animals , Mice , Aquaporin 4 , Brain , Morphogenesis , HMGB1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL