Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38607278

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Subject(s)
Autoimmunity , Dendritic Cells , Integrin alphaVbeta3 , Lupus Erythematosus, Systemic , Mice, Knockout , Signal Transduction , Toll-Like Receptor 7 , Animals , Mice , Dendritic Cells/immunology , Integrin alphaVbeta3/immunology , Integrin alphaVbeta3/metabolism , Autoimmunity/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Lupus Erythematosus, Systemic/immunology , Signal Transduction/immunology , Mice, Inbred C57BL , Cytokines/metabolism , Cytokines/immunology , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism , B-Lymphocytes/immunology , Autoantibodies/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Lymphocyte Activation/immunology , Disease Models, Animal
2.
Nat Immunol ; 14(6): 543-53, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644505

ABSTRACT

Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates many functions of these organelles that allow phagosomes to participate in processes that are essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3 inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3 inflammasome and caspase-1 in host defense.


Subject(s)
Carrier Proteins/immunology , Caspase 1/immunology , Inflammasomes/immunology , Membrane Glycoproteins/immunology , NADPH Oxidases/immunology , Phagosomes/immunology , Animals , Carrier Proteins/metabolism , Caspase 1/metabolism , Cells, Cultured , Enzyme Activation/immunology , Flow Cytometry , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Hydrogen-Ion Concentration , Immunoblotting , Inflammasomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Membrane Glycoproteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , NADPH Oxidase 2 , NADPH Oxidases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Phagocytosis/immunology , Phagosomes/metabolism , Phagosomes/microbiology , Phagosomes/ultrastructure , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology
3.
Nat Immunol ; 14(9): 949-58, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23933892

ABSTRACT

Leukocytes must traverse inflamed tissues to effectively control local infection. Although motility in dense tissues seems to be integrin independent and based on actomyosin-mediated protrusion and contraction, during inflammation, changes to the extracellular matrix (ECM) may necessitate distinct motility requirements. Indeed, we found that the interstitial motility of T cells was critically dependent on Arg-Gly-Asp (RGD)-binding integrins in the inflamed dermis. Inflammation-induced deposition of fibronectin was functionally linked to higher expression of integrin αV on effector CD4⁺ T cells. By intravital multiphoton imaging, we found that the motility of CD4⁺ T cells was dependent on αV expression. Selective blockade or knockdown of αV arrested T helper type 1 (TH1) cells in the inflamed tissue and attenuated local effector function. Our data demonstrate context-dependent specificity of lymphocyte movement in inflamed tissues that is essential for protective immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Movement/immunology , Inflammation/immunology , Inflammation/metabolism , Integrin alphaV/metabolism , Animals , Dermis/immunology , Dermis/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation , Inflammation/genetics , Integrin alphaV/genetics , Lymph Nodes/immunology , Mice , Oligopeptides/metabolism , Protein Binding , Th1 Cells/immunology , Th1 Cells/metabolism
4.
Nat Immunol ; 13(2): 136-43, 2012 Jan 08.
Article in English | MEDLINE | ID: mdl-22231519

ABSTRACT

Atherosclerotic plaque formation is fueled by the persistence of lipid-laden macrophages in the artery wall. The mechanisms by which these cells become trapped, thereby establishing chronic inflammation, remain unknown. Here we found that netrin-1, a neuroimmune guidance cue, was secreted by macrophages in human and mouse atheroma, where it inactivated the migration of macrophages toward chemokines linked to their egress from plaques. Acting via its receptor, UNC5b, netrin-1 inhibited the migration of macrophages directed by the chemokines CCL2 and CCL19, activation of the actin-remodeling GTPase Rac1 and actin polymerization. Targeted deletion of netrin-1 in macrophages resulted in much less atherosclerosis in mice deficient in the receptor for low-density lipoprotein and promoted the emigration of macrophages from plaques. Thus, netrin-1 promoted atherosclerosis by retaining macrophages in the artery wall. Our results establish a causative role for negative regulators of leukocyte migration in chronic inflammation.


Subject(s)
Atherosclerosis/immunology , Cell Movement/immunology , Macrophages/immunology , Nerve Growth Factors/metabolism , Plaque, Atherosclerotic/immunology , Tumor Suppressor Proteins/metabolism , Actins/metabolism , Animals , Cells, Cultured , Chemokine CCL19/metabolism , Chemokine CCL2/metabolism , Chimera/metabolism , Gene Deletion , Humans , Mice , Nerve Growth Factors/genetics , Netrin Receptors , Netrin-1 , Neuropeptides/metabolism , Polymerization , Receptors, Cell Surface/metabolism , Tumor Suppressor Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism
5.
Article in English | MEDLINE | ID: mdl-38967941

ABSTRACT

PURPOSE OF THE REVIEW: Acute pancreatitis is a common acute inflammatory disorder of the pancreas, and its incidence has been increasing worldwide. Approximately 10% of acute pancreatitis progresses to severe acute pancreatitis (SAP), which carries significant morbidity and mortality. Disordered immune response to pancreatic injury is regarded as a key event that mediates systemic injury in SAP. In this article, we review recent developments in immune biomarkers of SAP and future directions for research. RECENT FINDINGS: Given the importance of the NLRP3-inflammasome pathway in mediating systemic inflammatory response syndrome and systemic injury, recent studies have investigated associations of SAP with systemic levels of activators of NLRP3, such as the damage associated molecular patterns (DAMPs) for the first time in human SAP. For example, circulating levels of histones, mitochondrial DNAs, and cell free DNAs have been associated with SAP. A panel of mechanistically relevant immune markers (e.g., panel of Angiopoeitin-2, hepatocyte growth factor, interleukin-8 (IL-8), resistin and sTNF-α R1) carried higher predictive accuracies than existing clinical scores and individual immune markers. Of the cytokines with established relevance to SAP pathogenesis, phase 2 trials of immunotherapies, including tumor necrosis factor (TNF)-alpha inhibition and stimulation of IL-10 production, are underway to determine if altering the immunologic response can reduce the severity of acute pancreatitis (AP). SUMMARY: Circulating systemic levels of various DAMPs and a panel of immune markers that possibly reflect activities of different pathways that drive SAP appear promising as predictive biomarkers for SAP. But larger multicenter studies are needed for external validation. Studies investigating immune cellular pathways driving SAP using immunophenotyping techniques are scarce. Interdisciplinary efforts are also needed to bring some of the promising biomarkers to the bedside for validation and testing for clinical utility. Studies investigating the role of and characterization of altered gut-lymph and gut-microbiota in severe AP are needed.

6.
J Allergy Clin Immunol ; 151(6): 1484-1493, 2023 06.
Article in English | MEDLINE | ID: mdl-36708815

ABSTRACT

BACKGROUND: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses. OBJECTIVE: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection. METHODS: Primary AECs were obtained from 11 children with asthma and 10 healthy children, differentiated at air-liquid interface, and cultured in the presence of laboratory of allergic diseases 2 (LAD2) MCs. AECs were infected with rhinovirus serogroup A 16 (RV16) for 48 hours. RNA isolated from both AECs and MCs underwent RNA sequencing. Direct effects of epithelial-derived interferons on LAD2 MCs were examined by real-time quantitative PCR. RESULTS: MCs increased expression of proinflammatory and antiviral genes in AECs. AECs demonstrated a robust antiviral response after RV16 infection that resulted in significant changes in MC gene expression, including upregulation of genes involved in antiviral responses, leukocyte activation, and type 2 inflammation. Subsequent ex vivo modeling demonstrated that IFN-ß induces MC type 2 gene expression. The effects of AEC donor phenotype were small relative to the effects of viral infection and the presence of MCs. CONCLUSIONS: There is significant cross talk between AECs and MCs, which are present in the epithelium in asthma. Epithelial-derived interferons not only play a role in viral suppression but also further alter MC immune responses including specific type 2 genes.


Subject(s)
Asthma , Enterovirus Infections , Picornaviridae Infections , Child , Humans , Interferons , Rhinovirus/physiology , Mast Cells/metabolism , Epithelium/metabolism , Epithelial Cells , Antiviral Agents/pharmacology , Immunity
7.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G428-G438, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36098405

ABSTRACT

Severe acute pancreatitis (SAP) is associated with substantial morbidity and mortality. Several cytokines have been identified to have pathophysiological significance in SAP, but studies characterizing their early trajectories are lacking. Here we characterize the early trajectories of seven key cytokines associated with SAP and compare them with non-SAP subjects. Five proinflammatory cytokines (angiopoietin-2, interleukin-6, interleukin-8, monocyte chemoattractant protein-1, resistin) and two anti-inflammatory cytokines (hepatocyte growth factor, and soluble tumor necrosis factor-α receptor-1A) were measured in a prospective cohort of acute pancreatitis subjects (2012-2016) at the time of enrollment and then every 24 h for 5 days or until discharge. The cytokines' levels and trajectories were calibrated based on date of pain onset and were compared between healthy controls and three severity categories (mild, moderate, and severe). The cohort (n = 170) consisted of 27 healthy controls, 65 mild, 38 moderate, and 40 SAP. From day 1 of symptom onset, SAP subjects exhibited significantly higher levels of both pro- and anti-inflammatory cytokines compared with non-SAP and healthy subjects. But in SAP subjects, all proinflammatory cytokines' levels trended downward after day 2 (except for a flat slope for angiopoeitin-2) whereas for non-SAP subjects, the trajectory was upward: this trajectory difference between SAP versus non-SAP subjects resulted in narrowing of the differences initially seen on day 1 for proinflammatory cytokines. For anti-inflammatory cytokines, the trajectories were uniformly upward for both SAP and non-SAP subjects. Proinflammatory cytokine response is an early and time-sensitive event in SAP that should be accounted for when designing future biomarker studies and/or therapeutic trials.NEW & NOTEWORTHY In this study, we showed that the proinflammatory cytokine response in SAP is an early event, with subsequent downregulation of proinflammatory cytokines beginning at day 1 of symptom onset. Our findings underscore the importance of enrolling subjects very early in the disease course when conducting studies to investigate early immune events of SAP; this current study also serves as an important reference for the design of future biomarker studies and therapeutic trials in SAP.


Subject(s)
Pancreatitis , Humans , Pancreatitis/complications , Cytokines/metabolism , Interleukin-6 , Interleukin-8 , Chemokine CCL2 , Resistin , Hepatocyte Growth Factor/therapeutic use , Angiopoietin-2/therapeutic use , Prospective Studies , Tumor Necrosis Factor-alpha/metabolism , Acute Disease , Biomarkers , Anti-Inflammatory Agents/therapeutic use
9.
Nat Immunol ; 11(2): 155-61, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20037584

ABSTRACT

In atherosclerosis and Alzheimer's disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-beta triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-beta trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-beta stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Subject(s)
CD36 Antigens/immunology , Inflammation/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 6/immunology , Amyloid beta-Peptides/immunology , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Blotting, Western , CD36 Antigens/metabolism , Cell Line , Chemokines/biosynthesis , Chemokines/immunology , Gene Expression , Humans , Immunoprecipitation , Inflammation/metabolism , Lipoproteins, LDL/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/metabolism
10.
J Immunol ; 205(7): 1810-1818, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32859730

ABSTRACT

Systemic lupus erythematosus (SLE) is defined by loss of B cell tolerance, resulting in production of autoantibodies against nucleic acids and other cellular Ags. Aberrant activation of TLRs by self-derived RNA and DNA is strongly associated with SLE in patients and in mouse models, but the mechanism by which TLR signaling to self-ligands is regulated remains poorly understood. In this study, we show that αv integrin plays a critical role in regulating B cell TLR signaling to self-antigens in mice. We show that deletion of αv from B cells accelerates autoantibody production and autoimmune kidney disease in the Tlr7.1 transgenic mouse model of SLE. Increased autoimmunity was associated with specific expansion of transitional B cells, extrafollicular IgG2c-producing plasma cells, and activation of CD4 and CD8 T cells. Our data show that αv-mediated regulation of TLR signaling in B cells is critical for preventing autoimmunity and indicate that loss of αv promotes escape from tolerance. Thus, we identify a new regulatory pathway in autoimmunity and elucidate upstream signals that adjust B cell activation to prevent development of autoimmunity in a mouse model.


Subject(s)
B-Lymphocytes/physiology , Integrin alphaV/metabolism , Lupus Erythematosus, Systemic/immunology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Animals , Autoantibodies/metabolism , Autoimmunity , Cells, Cultured , Disease Models, Animal , Humans , Immunoglobulin G/metabolism , Immunomodulation , Integrin alphaV/genetics , Lymphocyte Activation , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Toll-Like Receptor 7/genetics
11.
Proc Natl Acad Sci U S A ; 116(10): 4462-4470, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30770452

ABSTRACT

CD4+ follicular helper T cells (Tfh) are essential for germinal center (GC) reactions in the lymph node that generate high-affinity, long-lived plasma cells (LLPCs). Temporal GC analysis suggests B memory cells (Bmem) are generated early, while LLPCs are generated late in the GC reaction. Distinct roles for Tfh at these temporally different stages are not yet clear. Tfh entry into the GC is highly dynamic and the signals that maintain Tfh within the GC for support of late LLPC production are poorly understood. The GC is marked by inflammation-induced presentation of specific ECM components. To determine if T cell recognition of these ECM components played a role in Tfh support of the GC, we immunized mice with a T cell-restricted deletion of the ECM-binding integrin αV (αV-CD4 cKO). T cell integrin αV deletion led to a striking defect in the number and size of the GCs following immunization with OVA protein in complete Freund's adjuvant. The GC defect was not due to integrin αV deficiency impeding Tfh generation or follicle entry or the ability of αV-CD4 cKO Tfh to contact and support B cell activation. Instead, integrin αV was essential for T cell-intrinsic accumulation within the GC. Altered Tfh positioning resulted in lower-affinity antibodies and a dramatic loss of LLPCs. Influenza A infection revealed that αV integrin was not required for Tfh support of Bmem but was essential for Tfh support of LLPCs. We highlight an αV integrin-ECM-guided mechanism of Tfh GC accumulation that selectively impacts GC output of LLPCs but not Bmem.


Subject(s)
Germinal Center/immunology , Integrin alphaV/physiology , Plasma Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Extracellular Matrix/metabolism , Mice , Mice, Inbred C57BL
12.
Am J Pathol ; 190(6): 1224-1235, 2020 06.
Article in English | MEDLINE | ID: mdl-32201264

ABSTRACT

Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell-directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and ß8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-ß1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin-mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.


Subject(s)
Apoptosis/physiology , Integrin alphaV/metabolism , Pneumonia/metabolism , T-Lymphocytes, Regulatory/metabolism , Adoptive Transfer , Animals , Forkhead Transcription Factors/metabolism , Lymphocyte Activation , Lymphocyte Depletion , Mice , Phagocytosis/physiology , Pneumonia/pathology
13.
Immunity ; 36(5): 695-6, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22633454

ABSTRACT

In this issue of Immunity, Irving et al. (2012) show that protein kinase R (PKR) regulates the cytoskeleton via an interaction with gelsolin. This alternative role for PKR prevents penetration of virions into the cell.

14.
Immunity ; 35(4): 536-49, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22018470

ABSTRACT

Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.


Subject(s)
Signal Transduction , rac GTP-Binding Proteins/immunology , Adaptor Proteins, Signal Transducing/metabolism , Enzyme Activation , HEK293 Cells , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , rac GTP-Binding Proteins/metabolism , RAC2 GTP-Binding Protein
16.
J Immunol ; 197(5): 1968-78, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481847

ABSTRACT

Activation of TGF-ß by dendritic cells (DCs) expressing αvß8 integrin is essential for the generation of intestinal regulatory T cells (Tregs) that in turn promote tolerance to intestinal Ags. We have recently shown that αvß8 integrin is preferentially expressed by CD103(+) DCs and confers their ability to activate TGF-ß and generate Tregs. However, how these DCs become specialized for this vital function is unknown. In this study, we show that ß8 expression is controlled by a combination of factors that include DC lineage and signals derived from the tissue microenvironment and microbiota. Specifically, our data demonstrate that TGF-ß itself, along with retinoic acid and TLR signaling, drives expression of αvß8 in DCs. However, these signals only result in high levels of ß8 expression in cells of the cDC1 lineage, CD8α(+), or CD103(+)CD11b(-) DCs, and this is associated with epigenetic changes in the Itgb8 locus. Together, these data provide a key illustrative example of how microenvironmental factors and cell lineage drive the generation of regulatory αvß8-expressing DCs specialized for activation of TGF-ß to facilitate Treg generation.


Subject(s)
Cell Lineage , Cellular Microenvironment , Dendritic Cells/immunology , Integrin beta Chains/metabolism , Intestines/cytology , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Differentiation , Dendritic Cells/physiology , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Integrin beta Chains/genetics , Integrin beta Chains/immunology , Intestines/immunology , Mice , T-Lymphocytes, Regulatory/physiology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Tretinoin/metabolism
19.
J Infect Dis ; 210(11): 1844-54, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24842831

ABSTRACT

Autophagy has been postulated to play role in mammalian host defense against fungal pathogens, although the molecular details remain unclear. Here, we show that primary macrophages deficient in the autophagic factor LC3 demonstrate diminished fungicidal activity but increased cytokine production in response to Candida albicans stimulation. LC3 recruitment to fungal phagosomes requires activation of the fungal pattern receptor dectin-1. LC3 recruitment to the phagosome also requires Syk signaling but is independent of all activity by Toll-like receptors and does not require the presence of the adaptor protein Card9. We further demonstrate that reactive oxygen species generation by NADPH oxidase is required for LC3 recruitment to the fungal phagosome. These observations directly link LC3 to the inflammatory pathway against C. albicans in macrophages.


Subject(s)
Fungi/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Macrophages/metabolism , Macrophages/microbiology , Microtubule-Associated Proteins/metabolism , Phagosomes/metabolism , Animals , CARD Signaling Adaptor Proteins/metabolism , Candida albicans/immunology , Cell Line , Interleukin-1beta/biosynthesis , Interleukin-6/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , Mice , Microtubule-Associated Proteins/genetics , Models, Biological , NADPH Oxidases/metabolism , Phagosomes/immunology , Phagosomes/microbiology , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proteoglycans , Reactive Oxygen Species/metabolism , Signal Transduction , Syk Kinase , Tumor Necrosis Factor-alpha/biosynthesis , beta-Glucans/metabolism
20.
Biochem Biophys Res Commun ; 447(2): 352-7, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24726648

ABSTRACT

Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src-JNK-YAP/TAZ pathway in response to mechanical stimulation.


Subject(s)
Integrin alphaV/physiology , Mechanotransduction, Cellular/physiology , Osteoblasts/physiology , Shear Strength/physiology , Stress, Mechanical , Acyltransferases , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cell Lineage , Cells, Cultured , Integrin alphaV/genetics , MAP Kinase Kinase 4/metabolism , Mechanotransduction, Cellular/genetics , Mice , Phosphoproteins/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL