ABSTRACT
BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).
Subject(s)
Fructans , Inflammatory Bowel Diseases , Adult , Humans , Leukocytes, Mononuclear , Intestines , Dietary Fiber , InflammationABSTRACT
BACKGROUND: Inflammatory bowel diseases (IBD) are a group of complex and multifactorial disorders with unknown etiology. Chronic intestinal inflammation develops against resident intestinal bacteria in genetically susceptible hosts. We hypothesized that host intestinal immunoglobulin (Ig) G can be used to identify bacteria involved in IBD pathogenesis. RESULTS: IgG-bound and -unbound microorganisms were collected from 32 pediatric terminal ileum aspirate washes during colonoscopy [non-IBD (n = 10), Crohn disease (n = 15), and ulcerative colitis (n = 7)], and composition was assessed using the Illumina MiSeq platform. In vitro analysis of invasive capacity was evaluated by fluorescence in situ hybridization and gentamicin invasion assay; immune activation was measured by qPCR. Despite considerable inter-individual variations, IgG binding favored specific and unique mucosa-associated species in pediatric IBD patients. Burkholderia cepacia, Flavonifractor plautii, and Rumminococcus sp. demonstrated increased IgG binding, while Pseudomonas ST29 demonstrated reduced IgG binding, in IBD. In vitro validation confirmed that B. cepacia, F. plautii, and Rumminococcus display invasive potential while Pseudomonas protogens did not. CONCLUSION: Using IgG as a marker of pathobionts in larger patient cohorts to identify microbes and elucidate their role in IBD pathogenesis will potentially underpin new strategies to facilitate development of novel, targeted diagnostic, and therapeutic approaches. Interestingly, this method can be used beyond the scope of this manuscript to evaluate altered gut pathobionts in a number of diseases associated with altered microbiota including arthritis, obesity, diabetes mellitus, alcoholic liver disease, cirrhosis, metabolic syndrome, and carcinomas.