Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 20(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835656

ABSTRACT

BACKGROUND: Sudden cardiac arrest is a major global health concern, and survival of patients with ischemia-reperfusion injury is a leading cause of myocardial dysfunction. The mechanism of this phenomenon is not well understood because of the complex pathophysiological nature of the disease. Aim of the study was to investigate the cardioprotective role of fingolimod in an in vivo model of cardiac arrest and resuscitation. METHODS: In this study, an in vivo rat model of cardiac arrest using extracorporeal membrane oxygenation resuscitation monitored by invasive hemodynamic measurement was developed. At the beginning of extracorporeal life support (ECLS), animals were randomly treated with fingolimod (Group A, n = 30) or saline (Group B, n = 30). Half of the animals in each group (Group A1 and B1, n = 15 each) were sacrificed after 1 h, and the remaining animals (Group A2 and B2) after 24 h of reperfusion. Blood and myocardial tissues were collected for analysis of cardiac features, inflammatory biomarkers, and cell signaling pathways. RESULTS: Treatment with fingolimod resulted in activation of survival pathways resulting into reduced inflammation, myocardial oxidative stress and apoptosis of cardiomyocytes. This led to significant improvement in systolic and diastolic functions of the left ventricle and improved contractility index. CONCLUSIONS: Sphingosine1phosphate receptor activation with fingolimod improved cardiac function after cardiac arrest supported with ECLS. Present study findings strongly support a cardioprotective role of fingolimod through sphingosine-1-phosphate receptor activation during reperfusion after circulatory arrest.


Subject(s)
Cardiopulmonary Resuscitation , Fingolimod Hydrochloride/therapeutic use , Heart Arrest/drug therapy , Myocardium/pathology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Collagen/metabolism , Disease Models, Animal , Fingolimod Hydrochloride/pharmacology , Heart Arrest/blood , Heart Arrest/physiopathology , Hemodynamics/drug effects , Inflammation Mediators/blood , Neutrophil Infiltration/drug effects , Nitrosative Stress/drug effects , Nucleotides/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction , Ventricular Function, Left/drug effects , bcl-2-Associated X Protein/metabolism
2.
Front Nutr ; 7: 596787, 2020.
Article in English | MEDLINE | ID: mdl-33598473

ABSTRACT

Background: Sub-optimal HDL is a prognostic marker of cardiovascular disease. South Asia has a high prevalence of sub-optimal HDL compared to other parts of the world. Intermittent fasting (IF) is a type of energy restriction which may improve serum HDL and other lipids thereby reducing the risk of cardiovascular diseases. Objective: The aim of the study was to evaluate the effect of IF on lipid profile and HDL-cholesterol in a sample of South Asian adults. Methods: A 6-week quasi-experimental (non-randomized) clinical trial was conducted on participants with low HDL (< 40 mg/dl for men and < 50 mg/dl for women). Participants of the control group were recommended not to change their diet. The intervention group was recommended to fast for ~12 h during day time, three times per week for 6 weeks. Pulse rate, blood pressure, body weight, waist circumference, serum lipid profile, and blood glucose levels were measured at baseline and after 6 weeks. Result: A total of 40 participants were enrolled in the study (N = 20 in each group), while 35 (20 control and 15 intervention) completed the trial and were included in data analysis of the study. Body measurements, including body weight, BMI and waist circumference, showed significant interaction effects (p's < 0.001), indicating that there were larger reductions in the IF group than in the control group. Significant interaction effects were also observed for total (p = 0.033), HDL (p = 0.0001), and LDL cholesterol (p = 0.010) with larger improvements in the IF group. Conclusion: This study suggests that intermittent fasting may protect cardiovascular health by improving the lipid profile and raising the sub-optimal HDL. Intermittent fasting may be adopted as a lifestyle intervention for the prevention, management and treatment of cardiovascular disorders. Clinical Trial Registration: NCT03805776, registered on January 16, 2019, https://clinicaltrials.gov/ct2/show/NCT03805776.

SELECTION OF CITATIONS
SEARCH DETAIL