ABSTRACT
BACKGROUND: Extending the dosing interval of a primary series of mRNA COVID-19 vaccination has been employed to reduce myocarditis risk in adolescents, but previous evaluation of impact on vaccine effectiveness (VE) is limited to risk after second dose. METHODS: We quantified the impact of the dosing interval based on case notifications and vaccination uptake in Hong Kong from January to April 2022, based on calendar-time proportional hazards models and matching approaches. RESULTS: We estimated that the hazard ratio (HR) and odds ratio (OR) of infections after the second dose for extended (28 days or more) versus regular (21-27 days) dosing intervals ranged from 0.86 to 0.99 from calendar-time proportional hazards models, and from 0.85 to 0.87 from matching approaches, respectively. Adolescents in the extended dosing groups (including those who did not receive a second dose in the study period) had a higher hazard of infection than those with a regular dosing interval during the intra-dose period (HR 1.66; 95% CI 1.07, 2.59; p = 0.02) after the first dose. CONCLUSIONS: Implementing an extended dosing interval should consider multiple factors including the degree of myocarditis risk, the degree of protection afforded by each dose, and the extra protection achievable using an extended dosing interval.
Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccine Efficacy , Humans , Adolescent , Male , COVID-19/prevention & control , COVID-19/epidemiology , Female , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Hong Kong/epidemiology , SARS-CoV-2/immunology , Immunization Schedule , Myocarditis/prevention & control , Myocarditis/epidemiology , Child , mRNA Vaccines , Proportional Hazards Models , Vaccination/methodsABSTRACT
BACKGROUND: Few studies have attempted to use clinical and laboratory parameters to stratify COVID-19 patients with severe versus non-severe initial disease and evaluate age-specific differences in developing multiple different COVID-19-associated disease outcomes. METHODS: A retrospective cohort included patients from the electronic health database of Hong Kong Hospital Authority between 1 January 2022 and 15 August 2022 until 15 November 2022. The cohort was divided into three cohorts by age (≤ 40, 41-64, and ≥ 65 years old). Each age cohort was stratified into four groups: (1) COVID-19 critically exposed group (ICU admission, mechanical ventilation support, CRP > 80 mg/L, or D-dimer > 2 g/mL), (2) severely exposed group (CRP 30-80 mg/L, D-dimer 0.5-2 g/mL, or CT value < 20), (3) mildly-moderately exposed group (COVID-19 positive-tested but not fulfilling the criteria for the aforementioned critically and severely exposed groups), and (4) unexposed group (without COVID-19). The characteristics between groups were adjusted with propensity score-based marginal mean weighting through stratification. Cox regression was conducted to determine the association of COVID-19 disease severity with disease outcomes and mortality in the acute and post-acute phase (< 30 and ≥ 30 days from COVID-19 infection) in each age group. RESULTS: A total of 286,114, 320,304 and 194,227 patients with mild-moderate COVID-19 infection; 18,419, 23,678 and 31,505 patients with severe COVID-19 infection; 1,168, 2,261 and 10,178 patients with critical COVID-19 infection, and 1,143,510, 1,369,365 and 1,012,177 uninfected people were identified in aged ≤ 40, 40-64, and ≥ 65 groups, respectively. Compared to the unexposed group, a general trend tending towards an increase in risks of multiple different disease outcomes as COVID-19 disease severity increases, with advancing age, was identified in both the acute and post-acute phases. Notably, the mildly-moderately exposed group were associated with either insignificant risks (aged ≤ 40) or the lowest risks (aged > 40) for the disease outcomes in the acute phase of infection (e.g., mortality risk HR (aged ≤ 40): 1.0 (95%CI: 0.5,2.0), HR (aged 41-64): 2.1 (95%CI: 1.8, 2.6), HR (aged > 65): 4.8 (95%CI: 4.6, 5.1)); while in the post-acute phase, these risks were largely insignificant in those aged < 65, remaining significant only in the elderly (age ≥ 65) (e.g., mortality risk HR (aged ≤ 40): 0.8 (95%CI: (0.5, 1.0)), HR (aged 41-64): 1.1 (95%CI: 1.0,1.2), HR (aged > 65): 1.5 (95%CI: 1.5,1.6)). Fully vaccinated patients were associated with lower risks of disease outcomes than those receiving less than two doses of vaccination. CONCLUSIONS: The risk of multiple different disease outcomes in both acute and post-acute phases increased significantly with the increasing severity of acute COVID-19 illness, specifically among the elderly. Moreover, future studies could improve by risk-stratifying patients based on universally accepted thresholds for clinical parameters, particularly biomarkers, using biological evidence from immunological studies.
Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/mortality , COVID-19/epidemiology , COVID-19/complications , Hong Kong/epidemiology , Middle Aged , Male , Female , Aged , Adult , Retrospective Studies , Cohort Studies , Age Factors , Risk Factors , Aged, 80 and overABSTRACT
BACKGROUND: Molnupiravir and nirmatrelvir-ritonavir are orally administered pharmacotherapies for mild to moderate COVID-19. However, the effectiveness of these drugs among very old (≥80 years), hospitalised patients remains unclear, limiting the risk-benefit assessment of these antivirals in this specific group. This study investigates the effectiveness of these antivirals in reducing mortality among this group of hospitalised patients with COVID-19. METHODS: Using a territory-wide public healthcare database in Hong Kong, a target trial emulation study was conducted with data from 13 642 eligible participants for the molnupiravir trial and 9553 for the nirmatrelvir-ritonavir trial. The primary outcome was all-cause mortality. Immortal time and confounding bias was minimised using cloning-censoring-weighting approach. Mortality odds ratios were estimated by pooled logistic regression after adjusting confounding biases by stabilised inverse probability weights. RESULTS: Both molnupiravir (HR: 0.895, 95% CI: 0.826-0.970) and nirmatrelvir-ritonavir (HR: 0.804, 95% CI: 0.678-0.955) demonstrated moderate mortality risk reduction among oldest-old hospitalised patients. No significant interaction was observed between oral antiviral treatment and vaccination status. The 28-day risk of mortality was lower in initiators than non-initiators for both molnupiravir (risk difference: -1.09%, 95% CI: -2.29, 0.11) and nirmatrelvir-ritonavir (risk difference: -1.71%, 95% CI: -3.30, -0.16) trials. The effectiveness of these medications was observed regardless of the patients' prior vaccination status. CONCLUSIONS: Molnupiravir and nirmatrelvir-ritonavir are moderately effective in reducing mortality risk among hospitalised oldest-old patients with COVID-19, regardless of their vaccination status.
Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Hospitalization , SARS-CoV-2 , Humans , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Male , Female , Aged, 80 and over , Hospitalization/statistics & numerical data , Hong Kong/epidemiology , Administration, Oral , Ritonavir/therapeutic use , Ritonavir/administration & dosage , COVID-19/mortality , COVID-19/epidemiology , Hydroxylamines/administration & dosage , Hydroxylamines/therapeutic use , Treatment Outcome , Cytidine/analogs & derivatives , Cytidine/administration & dosage , Cytidine/therapeutic use , Leucine/analogs & derivativesABSTRACT
OBJECTIVE: The evidence of thyroid dysfunction in the post-acute phase of SARS-CoV-2 infection is limited. This study aimed to evaluate the risk of incident thyroid dysfunction in the post-acute phase of COVID-19. METHODS: This retrospective, propensity-score matched, population-based study included COVID-19 patients and non-COVID-19 individuals between January 2020 and March 2022, identified from the electronic medical records of the Hong Kong Hospital Authority. The cohort was followed up until the occurrence of outcomes, death, or 31 January 2023, whichever came first. Patients with COVID-19 were 1:1 matched to controls based on various variables. The primary outcome was a composite of thyroid dysfunction (hyperthyroidism, hypothyroidism, initiation of antithyroid drug or levothyroxine, and thyroiditis). Cox regression was employed to evaluate the risk of incident thyroid dysfunction during the post-acute phase. RESULTS: A total of 84 034 COVID-19 survivors and 84 034 matched controls were identified. Upon a median follow-up of 303 days, there was no significant increase in the risk of diagnosed thyroid dysfunction in the post-acute phase of COVID-19 (hazard ratio [HR] 1.058, 95% confidence interval 0.979-1.144, P = .154). Regarding the secondary outcomes, patients with COVID-19 did not have increased risk of hyperthyroidism (HR 1.061, P = .345), hypothyroidism (HR 1.062, P = .255), initiation of antithyroid drug (HR 1.302, P = .070), initiation of levothyroxine (HR 1.086, P = .426), or thyroiditis (P = .252). Subgroup and sensitivity analyses were largely consistent with the main analyses. CONCLUSION: Our population-based cohort study provided important reassuring data that COVID-19 was unlikely to be associated with persistent effects on thyroid function.
Subject(s)
COVID-19 , Hypothyroidism , Thyroid Diseases , Humans , COVID-19/epidemiology , COVID-19/complications , Hong Kong/epidemiology , Male , Female , Middle Aged , Retrospective Studies , Aged , Adult , Hypothyroidism/epidemiology , Thyroid Diseases/epidemiology , Hyperthyroidism/epidemiology , Incidence , SARS-CoV-2 , Cohort Studies , Thyroxine/therapeutic use , Risk Factors , Thyroiditis/epidemiology , Propensity Score , Post-Acute COVID-19 Syndrome , Antithyroid Agents/therapeutic useABSTRACT
BACKGROUND: Whether hospitalized patients benefit from COVID-19 oral antivirals is uncertain. OBJECTIVE: To examine the real-world effectiveness of molnupiravir and nirmatrelvir-ritonavir in hospitalized patients with COVID-19 during the Omicron outbreak. DESIGN: Target trial emulation study. SETTING: Electronic health databases in Hong Kong. PARTICIPANTS: The molnupiravir emulated trial included hospitalized patients with COVID-19 aged 18 years or older between 26 February and 18 July 2022 (n = 16 495). The nirmatrelvir-ritonavir emulated trial included hospitalized patients with COVID-19 aged 18 years or older between 16 March and 18 July 2022 (n = 7119). INTERVENTION: Initiation of molnupiravir or nirmatrelvir-ritonavir within 5 days of hospitalization with COVID-19 versus no initiation of molnupiravir or nirmatrelvir-ritonavir. MEASUREMENTS: Effectiveness against all-cause mortality, intensive care unit (ICU) admission, or use of ventilatory support within 28 days. RESULTS: The use of oral antivirals in hospitalized patients with COVID-19 was associated with a lower risk for all-cause mortality (molnupiravir: hazard ratio [HR], 0.87 [95% CI, 0.81 to 0.93]; nirmatrelvir-ritonavir: HR, 0.77 [CI, 0.66 to 0.90]) but no significant risk reduction in terms of ICU admission (molnupiravir: HR, 1.02 [CI, 0.76 to 1.36]; nirmatrelvir-ritonavir: HR, 1.08 [CI, 0.58 to 2.02]) or the need for ventilatory support (molnupiravir: HR, 1.07 [CI, 0.89 to 1.30]; nirmatrelvir-ritonavir: HR, 1.03 [CI, 0.70 to 1.52]). There was no significant interaction between drug treatment and the number of COVID-19 vaccine doses received, thereby supporting the effectiveness of oral antivirals regardless of vaccination status. No significant interaction between nirmatrelvir-ritonavir treatment and age, sex, or Charlson Comorbidity Index was observed, whereas molnupiravir tended to be more effective in older people. LIMITATION: The outcome of ICU admission or need for ventilatory support may not capture all severe COVID-19 cases; unmeasured confounders, such as obesity and health behaviors, may exist. CONCLUSION: Molnupiravir and nirmatrelvir-ritonavir reduced all-cause mortality in both vaccinated and unvaccinated hospitalized patients. No significant reduction in ICU admission or the need for ventilatory support was observed. PRIMARY FUNDING SOURCE: Health and Medical Research Fund Research on COVID-19, Government of the Hong Kong Special Administrative Region; Research Grants Council, Collaborative Research Fund; and Health Bureau, Government of the Hong Kong Special Administrative Region.
Subject(s)
COVID-19 , Aged , Humans , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines , Ritonavir/therapeutic useABSTRACT
BACKGROUND: Observable symptoms of Bell's palsy following vaccinations arouse concern over the safety profiles of novel coronavirus disease 2019 (COVID-19) vaccines. However, there are only inconclusive findings on Bell's palsy following messenger (mRNA) COVID-19 vaccination. This study aims to update the previous analyses on the risk of Bell's palsy following mRNA (BNT162b2) COVID-19 vaccination. METHODS: This study included cases aged ≥16 years with a new diagnosis of Bell's palsy within 28 days after BNT162b2 vaccinations from the population-based electronic health records in Hong Kong. Nested case-control and self-controlled case series (SCCS) analyses were used, where the association between Bell's palsy and BNT162b2 was evaluated using conditional logistic and Poisson regression, respectively. RESULTS: Totally 54 individuals were newly diagnosed with Bell's palsy after BNT162b2 vaccinations. The incidence of Bell's palsy was 1.58 (95% confidence interval [CI], 1.19-2.07) per 100 000 doses administered. The nested case-control analysis showed significant association between BNT162b2 vaccinations and Bell's palsy (adjusted odds ratio [aOR], 1.543; 95% CI, 1.123-2.121), with up to 1.112 excess events per 100 000 people who received 2 doses of BNT162b2. An increased risk of Bell's palsy was observed during the first 14 days after the second dose of BNT162b2 in both nested case-control (aOR, 2.325; 95% CI, 1.414-3.821) and SCCS analysis (adjusted incidence rate ratio, 2.44; 95% CI, 1.32-4.50). CONCLUSIONS: There was an overall increased risk of Bell's palsy following BNT162b2 vaccination, particularly within the first 14 days after the second dose, but the absolute risk was very low.
Subject(s)
Bell Palsy , COVID-19 Vaccines , COVID-19 , Facial Paralysis , Humans , Bell Palsy/epidemiology , Bell Palsy/etiology , BNT162 Vaccine , Case-Control Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/complications , COVID-19 Vaccines/adverse effects , Research Design , Vaccination/adverse effectsABSTRACT
BACKGROUND: The risk of incident diabetes following Coronavirus Disease 2019 (COVID-19) vaccination remains to be elucidated. Also, it is unclear whether the risk of incident diabetes after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is modified by vaccination status or differs by SARS-CoV-2 variants. We evaluated the incidence of diabetes following mRNA (BNT162b2), inactivated (CoronaVac) COVID-19 vaccines, and after SARS-CoV-2 infection. METHODS AND FINDINGS: In this population-based cohort study, individuals without known diabetes were identified from an electronic health database in Hong Kong. The first cohort included people who received ≥1 dose of COVID-19 vaccine and those who did not receive any COVID-19 vaccines up to September 2021. The second cohort consisted of confirmed COVID-19 patients and people who were never infected up to March 2022. Both cohorts were followed until August 15, 2022. A total of 325,715 COVID-19 vaccine recipients (CoronaVac: 167,337; BNT162b2: 158,378) and 145,199 COVID-19 patients were 1:1 matched to their respective controls using propensity score for various baseline characteristics. We also adjusted for previous SARS-CoV-2 infection when estimating the conditional probability of receiving vaccinations, and vaccination status when estimating the conditional probability of contracting SARS-CoV-2 infection. Hazard ratios (HRs) and 95% confidence intervals (CIs) for incident diabetes were estimated using Cox regression models. In the first cohort, we identified 5,760 and 4,411 diabetes cases after receiving CoronaVac and BNT162b2 vaccines, respectively. Upon a median follow-up of 384 to 386 days, there was no evidence of increased risks of incident diabetes following CoronaVac or BNT162b2 vaccination (CoronaVac: 9.08 versus 9.10 per 100,000 person-days, HR = 0.998 [95% CI 0.962 to 1.035]; BNT162b2: 7.41 versus 8.58, HR = 0.862 [0.828 to 0.897]), regardless of diabetes type. In the second cohort, we observed 2,109 cases of diabetes following SARS-CoV-2 infection. Upon a median follow-up of 164 days, SARS-CoV-2 infection was associated with significantly higher risk of incident diabetes (9.04 versus 7.38, HR = 1.225 [1.150 to 1.305])-mainly type 2 diabetes-regardless of predominant circulating variants, albeit lower with Omicron variants (p for interaction = 0.009). The number needed to harm at 6 months was 406 for 1 additional diabetes case. Subgroup analysis revealed no evidence of increased risk of incident diabetes among fully vaccinated COVID-19 survivors. Main limitations of our study included possible misclassification bias as type 1 diabetes was identified through diagnostic coding and possible residual confounders due to its observational nature. CONCLUSIONS: There was no evidence of increased risks of incident diabetes following COVID-19 vaccination. The risk of incident diabetes increased following SARS-CoV-2 infection, mainly type 2 diabetes. The excess risk was lower, but still statistically significant, for Omicron variants. Fully vaccinated individuals might be protected from risks of incident diabetes following SARS-CoV-2 infection.
Subject(s)
COVID-19 Vaccines , COVID-19 , Diabetes Mellitus, Type 2 , Humans , BNT162 Vaccine , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Hong Kong/epidemiology , Incidence , Propensity Score , SARS-CoV-2 , Vaccination/adverse effectsABSTRACT
BACKGROUND: With accruing case reports on de novo or relapsing glomerular diseases (GD) following different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, we evaluated the risk of GD following BNT162b2 and CoronaVac vaccines. METHODS: A modified self-controlled case series analysis was conducted using anonymized, territory-wide SARS-CoV-2 vaccination records in Hong Kong. All Hong Kong residents aged 18 years or above with outcomes of interest were included. Outcomes of interest were GD, proteinuria or hematuria within 42 days following each dose of SARS-CoV-2 vaccines. Incidence per 100 000 doses of SARS-CoV-2 vaccines administered was calculated, and incidence rate ratios (IRRs) were estimated using conditional Poisson regression with seasonality adjustment. RESULTS: Between 23 February 2021 and 31 March 2022, 4062 patients had an incident diagnosis of GD, proteinuria or hematuria, with 2873 of them being vaccinated during the observation period. The incidences of the composite events 1-41 days after vaccination were 3.7 (95% CI 3.1-4.4) per 100 000 doses of BNT162b2 administered, and 6.5 (95% CI 5.7-7.5) per 100 000 doses CoronaVac administered. There was no significant increase in the risks of composite events following the first (BNT162b2: IRR = 0.76, 95% CI 0.56-1.03; CoronaVac: IRR = 0.92, 95% CI 0.72-1.19), second (BNT162b2: IRR = 0.92, 95% CI 0.72-1.17; CoronaVac: IRR = 0.88. 95% CI 0.68-1.14) or third (BNT162b2: IRR = 0.39. 95% CI 0.15-1.03; CoronaVac: IRR = 1.18. 95% CI 0.53-2.63) dose of SARS-CoV-2 vaccines. CONCLUSIONS: There was no evidence of increased risks of de novo or relapsing GD with either BNT162b2 or CoronaVac vaccines.
Subject(s)
COVID-19 , Kidney Diseases , Humans , COVID-19 Vaccines , BNT162 Vaccine , Hematuria , RNA, Messenger , SARS-CoV-2 , ProteinuriaABSTRACT
AIM: To evaluate the long-term associations between coronavirus disease 2019 (COVID-19) and diabetes complications and mortality, in patients with diabetes. MATERIALS AND METHODS: People with diabetes diagnosed with COVID-19 infection (exposed group), from 16 March 2020 to 31 May 2021 from the UK Biobank (UKB cohort; n = 2456), and from 1 April 2020 to 31 May 2022 from the electronic health records in Hong Kong (HK cohort; n = 80 546), were recruited. Each patient was randomly matched with participants with diabetes but without COVID-19 (unexposed group), based on age and sex (UKB, n = 41 801; HK, n = 391 849). Patients were followed for up to 18 months until 31 August 2021 for UKB, and up to 28 months until 15 August 2022 for HK. Characteristics between cohorts were further adjusted with Inverse Probability Treatment Weighting. Long-term association of COVID-19 with multi-organ disease complications and all-cause mortality after 21 days of diagnosis was evaluated by Cox regression. RESULTS: Compared with uninfected participants, patients with COVID-19 infection with diabetes were consistently associated with higher risks of cardiovascular diseases (coronary heart disease [CHD]: hazard ratio [HR] [UKB]: 1.6 [95% confidence interval {CI}: 1.0, 2.4], HR [HK]: 1.2 [95% CI: 1.0, 1.5]; and stroke: HR [UKB]: 2.0 [95% CI: 1.1, 3.6], HR [HK]: 1.5 [95% CI: 1.3, 1.8]), microvascular disease (end stage renal disease: HR [UKB]: 2.1 [95% CI: 1.1, 4.0], HR [HK]: 1.2 [95% CI: 1.1, 1.4]) and all-cause mortality (HR [UKB]: 4.6 [95% CI: 3.8, 5.5], HR [HK]: 2.6 [95% CI: 2.5, 2.8]), in both cohorts. CONCLUSIONS: COVID-19 infection is associated with long-term increased risks of diabetes complications (especially cardiovascular complications, and mortality) in people with diabetes. Monitoring for signs/symptoms of developing these long-term complications post-COVID-19 infection in the infected patient population of people with diabetes may be beneficial in minimizing their morbidity and mortality.
Subject(s)
COVID-19 , Diabetes Complications , Diabetes Mellitus , Humans , COVID-19/complications , COVID-19/epidemiology , Hong Kong/epidemiology , Diabetes Complications/epidemiology , Proportional Hazards Models , United Kingdom/epidemiology , Diabetes Mellitus/epidemiologyABSTRACT
BACKGROUND: Multimorbidity is a prevalent risk factor for COVID-19-related complications and death. We sought to evaluate the association of homologous booster vaccination using BNT162b2 (Pfizer-BioNTech) or CoronaVac (Sinovac) with COVID-19-related deaths among people with multimorbidity during the initial Omicron wave of the COVID-19 pandemic. METHODS: Using routine clinical records from public health care facilities in Hong Kong, we conducted a territory-wide retrospective cohort study comparing people aged 18 years or older with 2 or more chronic conditions who received a homologous booster (third) dose with those who received only 2 doses, between Nov. 11, 2021, and Mar. 31, 2022. The primary outcome was death related to COVID-19. RESULTS: We included 120 724 BNT162b2 recipients (including 87 289 who received a booster), followed for a median of 34 (interquartile range [IQR] 20-63) days and 127 318 CoronaVac recipients (including 94 977 who received a booster), followed for a median of 38 (IQR 22-77) days. Among BNT162b2 recipients, booster-vaccinated people had fewer COVID-19-related deaths than those who received 2 doses (5 v. 34, incidence rate 1.3 v. 23.4 per million person-days, weighted incidence rate ratio [IRR] 0.05, 95% confidence interval [CI] 0.02-0.16). We observed similar results among recipients of CoronaVac booster vaccination compared with those who received only 2 doses (26 v. 88, incidence rate 5.3 v. 53.1 per million person-days, weighted IRR 0.08, 95% CI 0.05-0.12). INTERPRETATION: Among people with multimorbidity, booster vaccination with BNT162b2 or CoronaVac was associated with reductions of more than 90% in COVID-19-related mortality rates compared with only 2 doses. These results highlight the crucial role of booster vaccination for protecting vulnerable populations as the COVID-19 pandemic continues to evolve.
Subject(s)
COVID-19 , mRNA Vaccines , Humans , BNT162 Vaccine , Cohort Studies , Multimorbidity , Pandemics , Retrospective Studies , COVID-19/prevention & control , VaccinationABSTRACT
BACKGROUND: Case reports of carditis after BNT162b2 vaccination are accruing worldwide. OBJECTIVE: To examine the association of BNT162b2 and CoronaVac (Sinovac) vaccination with carditis. DESIGN: Case-control study with hospital control participants. SETTING: Territory-wide, public health care database with linkage to population-based vaccination records in Hong Kong. PATIENTS: Inpatients aged 12 years or older first diagnosed with carditis were selected as case patients. All other hospitalized patients without carditis were treated as control participants. Ten control participants were randomly matched with each case patient by age, sex, and admission date. INTERVENTION: Vaccination with BNT162b2 or CoronaVac. MEASUREMENTS: Incident diagnosis of carditis based on the International Classification of Diseases, Ninth Revision, and elevated troponin levels. RESULTS: A total of 160 case patients and 1533 control participants were included. Incidence of carditis per 100 000 doses of CoronaVac and BNT162b2 administered was estimated to be 0.31 (95% CI, 0.13 to 0.66) and 0.57 (CI, 0.36 to 0.90), respectively. Multivariable analyses showed that recipients of the BNT162b2 vaccine had higher odds of carditis (adjusted odds ratio [OR], 3.57 [CI, 1.93 to 6.60]) than unvaccinated persons. Stratified by sex, the OR was 4.68 (CI, 2.25 to 9.71) for males and 2.22 (CI, 0.57 to 8.69) for females receiving the BNT162b2 vaccine. The ORs for adults and adolescents receiving the BNT162b2 vaccine were 2.41 (CI, 1.18 to 4.90) and 13.79 (CI, 2.86 to 110.38), respectively. Subanalysis showed an OR of 9.29 (CI, 3.94 to 21.91) for myocarditis and 1.06 (CI, 0.35 to 3.22) for pericarditis associated with BNT162b2. The risk was mainly seen after the second dose of BNT162b2 rather than the first. No association between CoronaVac and carditis with a magnitude similar to that for BNT162b2 was seen. LIMITATION: Limited sample size, absence of electrocardiography and other clinical investigative data, and unrecorded overseas vaccination exposure. CONCLUSION: Despite a low absolute risk, there is an increased risk for carditis associated with BNT162b2 vaccination. This elevated risk should be weighed against the benefits of vaccination. PRIMARY FUNDING SOURCE: Health and Medical Research Fund.
Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , Myocarditis , Adolescent , Adult , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Case-Control Studies , Child , Female , Humans , Male , Myocarditis/epidemiology , Myocarditis/etiology , Vaccines, Inactivated/adverse effects , mRNA VaccinesABSTRACT
BACKGROUND: Safety monitoring of coronavirus disease 2019 (COVID-19) vaccines is crucial during mass vaccination rollout to inform the choice of vaccines and reduce vaccine hesitancy. Considering the scant evidence directly comparing the safety profiles of mRNA and inactivated SARS-CoV-2 vaccines, this territory-wide cohort study aims to compare the incidence of various adverse events of special interest (AESIs) and all-cause mortality between CoronaVac (inactivated vaccine) and BNT162b2 (mRNA-based vaccine). Our results can help vaccine recipients make an informed choice. METHODS AND FINDINGS: A retrospective, population-based cohort of individuals who had received at least 1 dose of BNT162b2 or CoronaVac from 23 February to 9 September 2021 in Hong Kong, and had data linkage to the electronic medical records of the Hong Kong Hospital Authority, were included. Those who had received mixed doses were excluded. Individuals were observed from the date of vaccination (first or second dose) until mortality, second dose vaccination (for first dose analysis), 21 days after vaccination, or 30 September 2021, whichever came first. Baseline characteristics of vaccinated individuals were balanced between groups using propensity score weighting. Outcome events were AESIs and all-cause mortality recorded during 21 days of post-vaccination follow-up after each dose, except anaphylaxis, for which the observation period was restricted to 2 days after each dose. Incidence rate ratios (IRRs) of AESIs and mortality comparing between CoronaVac and BNT162b2 recipients were estimated after each dose using Poisson regression models. Among 2,333,379 vaccinated individuals aged 18 years or above, the first dose analysis included 1,308,820 BNT162b2 and 955,859 CoronaVac recipients, while the second dose analysis included 1,116,677 and 821,560 individuals, respectively. The most frequently reported AESI among CoronaVac and BNT162b2 recipients was thromboembolism (first dose: 431 and 290 per 100,000 person-years; second dose: 385 and 266 per 100,000 person-years). After the first dose, incidence rates of overall AESIs (IRR = 0.98, 95% CI 0.89-1.08, p = 0.703) and mortality (IRR = 0.96, 95% CI 0.63-1.48, p = 0.868) associated with CoronaVac were generally comparable to those for BNT162b2, except for Bell palsy (IRR = 1.95, 95% CI 1.12-3.41, p = 0.018), anaphylaxis (IRR = 0.34, 95% CI 0.14-0.79, p = 0.012), and sleeping disturbance or disorder (IRR = 0.66, 95% CI 0.49-0.89, p = 0.006). After the second dose, incidence rates of overall AESIs (IRR = 0.97, 95% CI 0.87-1.08, p = 0.545) and mortality (IRR = 0.85, 95% CI 0.51-1.40, p = 0.516) were comparable between CoronaVac and BNT162b2 recipients, with no significant differences observed for specific AESIs. The main limitations of this study include residual confounding due to its observational nature, and the possibility of its being underpowered for some AESIs with very low observed incidences. CONCLUSIONS: In this study, we observed that the incidences of AESIs (cumulative incidence rate of 0.06%-0.09%) and mortality following the first and second doses of CoronaVac and BNT162b2 vaccination were very low. The safety profiles of the vaccines were generally comparable, except for a significantly higher incidence rate of Bell palsy, but lower incidence rates of anaphylaxis and sleeping disturbance or disorder, following first dose CoronaVac versus BNT162b2 vaccination. Our results could help inform the choice of inactivated COVID-19 vaccines, mainly administered in low- and middle-income countries with large populations, in comparison to the safety of mRNA vaccines. Long-term surveillance on the safety profile of COVID-19 vaccines should continue.
Subject(s)
Anaphylaxis , BNT162 Vaccine , Bell Palsy , COVID-19 , Vaccines , BNT162 Vaccine/adverse effects , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Hong Kong/epidemiology , Humans , RNA, Messenger , Retrospective Studies , SARS-CoV-2/genetics , Vaccination/adverse effectsABSTRACT
BACKGROUND & AIMS: Case reports of severe acute liver injury (ALI) following COVID-19 vaccination have recently been published. We evaluated the risks of ALI following COVID-19 vaccination (BNT162b2 or CoronaVac). METHODS: We conducted a modified self-controlled case series analysis using the vaccination records in Hong Kong with data linkage to electronic medical records from a territory-wide healthcare database. Incidence rate ratios (IRRs) for ALI outcome in the 56-day period following first and second doses of COVID-19 vaccines in comparison to the non-exposure period were estimated and compared to the ALI risk in patients with SARS-CoV-2 infection. RESULTS: Among 2,343,288 COVID-19 vaccine recipients who were at risk, 4,677 patients developed ALI for the first time between 23rd February 2021 to 30th September 2021. The number of ALI cases within 56 days after the first and second dose of vaccination were 307 and 521 (335 and 334 per 100,000 person-years) for BNT162b2, and 304 and 474 (358 and 403 per 100,000 person-years) for CoronaVac, respectively, compared to 32,997 ALI cases per 100,000 person-years among patients within 56 days of SARS-CoV-2 infection. Compared to the non-exposure period, no increased risk was observed in the 56-day risk period for first (IRR 0.800; 95% CI 0.680-0.942) and second (IRR 0.944; 95% CI 0.816-1.091) dose of BNT162b2, or first (IRR 0.689; 95% CI 0.588-0.807) and second (IRR 0.905; 95% CI 0.781-1.048) dose of CoronaVac. There were no severe or fatal cases of ALI following COVID-19 vaccination. CONCLUSION: There was no evidence of an increased risk of ALI associated with BNT162b2 or CoronaVac vaccination. Based on all current available evidence from previous studies and our study, the benefit of mass vaccination far outweighs the ALI risk from vaccination. LAY SUMMARY: There have been some recent reports that COVID-19 vaccination could be associated with acute liver injury. In our study, we found no evidence that COVID-19 vaccination increased the risk of acute liver injury, which was much more common after SARS-CoV-2 infection than after vaccination. Hence, our study provides further data indicating that the benefits of mass COVID-19 vaccination outweigh the potential risks.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Anthraquinones , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Liver/injuries , Pyrazoles , RNA, Messenger , SARS-CoV-2ABSTRACT
BACKGROUND: In view of accumulating case reports of thyroid dysfunction following COVID-19 vaccination, we evaluated the risks of incident thyroid dysfunction following inactivated (CoronaVac) and mRNA (BNT162b2) COVID-19 vaccines using a population-based dataset. METHODS: We identified people who received COVID-19 vaccination between 23 February and 30 September 2021 from a population-based electronic health database in Hong Kong, linked to vaccination records. Thyroid dysfunction encompassed anti-thyroid drug (ATD)/levothyroxine (LT4) initiation, biochemical picture of hyperthyroidism/hypothyroidism, incident Graves' disease (GD), and thyroiditis. A self-controlled case series design was used to estimate the incidence rate ratio (IRR) of thyroid dysfunction in a 56-day post-vaccination period compared to the baseline period (non-exposure period) using conditional Poisson regression. RESULTS: A total of 2,288,239 people received at least one dose of COVID-19 vaccination (57.8% BNT162b2 recipients and 42.2% CoronaVac recipients). 94.3% of BNT162b2 recipients and 92.2% of CoronaVac recipients received the second dose. Following the first dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.864, 95% CI 0.670-1.114; CoronaVac: IRR 0.707, 95% CI 0.549-0.912), LT4 initiation (BNT162b2: IRR 0.911, 95% CI 0.716-1.159; CoronaVac: IRR 0.778, 95% CI 0.618-0.981), biochemical picture of hyperthyroidism (BNT162b2: IRR 0.872, 95% CI 0.744-1.023; CoronaVac: IRR 0.830, 95% CI 0.713-0.967) or hypothyroidism (BNT162b2: IRR 1.002, 95% CI 0.838-1.199; CoronaVac: IRR 0.963, 95% CI 0.807-1.149), GD, and thyroiditis. Similarly, following the second dose of COVID-19 vaccination, there was no increase in the risks of ATD initiation (BNT162b2: IRR 0.972, 95% CI 0.770-1.227; CoronaVac: IRR 0.879, 95%CI 0.693-1.116), LT4 initiation (BNT162b2: IRR 1.019, 95% CI 0.833-1.246; CoronaVac: IRR 0.768, 95% CI 0.613-0.962), hyperthyroidism (BNT162b2: IRR 1.039, 95% CI 0.899-1.201; CoronaVac: IRR 0.911, 95% CI 0.786-1.055), hypothyroidism (BNT162b2: IRR 0.935, 95% CI 0.794-1.102; CoronaVac: IRR 0.945, 95% CI 0.799-1.119), GD, and thyroiditis. Age- and sex-specific subgroup and sensitivity analyses showed consistent neutral associations between thyroid dysfunction and both types of COVID-19 vaccines. CONCLUSIONS: Our population-based study showed no evidence of vaccine-related increase in incident hyperthyroidism or hypothyroidism with both BNT162b2 and CoronaVac.
Subject(s)
COVID-19 Vaccines , COVID-19 , Hyperthyroidism , Hypothyroidism , Female , Humans , Male , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hyperthyroidism/chemically induced , Hyperthyroidism/epidemiology , Hypothyroidism/chemically induced , Hypothyroidism/epidemiology , RNA, Messenger , Thyroxine , VaccinesABSTRACT
BACKGROUND: Safety after the second dose of the SARS-CoV-2 vaccine remains to be elucidated, especially among individuals reporting adverse events after their first dose. This study aims to evaluate the impact of a delayed second dose on all-cause mortality and emergency services. METHODS: A territory-wide, retrospective cohort of people who had completed two doses of mRNA (BNT162b2) or inactivated SARS-CoV-2 (CoronaVac) vaccine between February 23 and July 3, 2021, in Hong Kong was analyzed, with linkage to electronic health records retrieved from the Hong Kong Hospital Authority. Vaccine recipients were classified as receiving a second dose within recommended intervals (21-28 days for BNT162b2; 14-28 days for CoronaVac) or delayed. Study outcomes were all-cause mortality, emergency department (ED) visits, and unscheduled hospitalizations within 28 days after the second dose of vaccination. RESULTS: Among 417,497 BNT162b2 and 354,283 CoronaVac second dose recipients, 3.8% and 28.5% received the second dose beyond the recommended intervals (mean 34.4 and 31.8 days), respectively. During the study period, there were < 5 daily new cases of COVID-19 infections in the community. Delaying the second dose was not associated with all-cause mortality (hazard ratio [HR] = 1.185, 95% CI 0.478-2.937, P = 0.714), risk of ED visit (HR = 0.966, 95% CI 0.926-1.008, P = 0.113), and risk of unscheduled hospitalization (HR = 0.956, 95% CI 0.878-1.040, P = 0.294) compared to that within the recommended interval for CoronaVac recipients. No statistically significant differences in all-cause mortality (HR = 4.438, 95% CI 0.951-20.701, P = 0.058), ED visit (HR = 1.037, 95% CI 0.951-1.130, P = 0.411), and unscheduled hospitalization (HR = 1.054, 95% CI 0.867-1.281, P = 0.597) were identified between people who received a second dose of BNT162b2 within and beyond the recommended intervals. CONCLUSIONS: No significant association between delayed second dose of BNT162b2 or CoronaVac and all-cause mortality, ED visit, and unscheduled hospitalization was observed in the present cohort. Regardless of the recommended or delayed schedule for SARS-CoV-2 vaccination, a second dose of both vaccines should be administered to obtain better protection against infection and serious disease. The second dose should be administered within the recommended interval following the manufacturer's product information, until further studies support the benefits of delaying vaccination outweighing the risks.
Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Emergency Service, Hospital , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA VaccinesABSTRACT
BACKGROUND: Post-marketing pharmacovigilance data are scant on the safety of Covid-19 vaccines among people with previous SARS-CoV-2 infection compared with ordinary vaccine recipients. We compared the post-vaccination adverse events of special interests (AESI), accident and emergency room (A&E) visit, and hospitalization between these two groups. METHODS: We conducted a retrospective cohort study using a territory-wide public healthcare database with population-based vaccination records in Hong Kong. RESULTS: In total, 3922 vaccine recipients with previous SARS-CoV-2 infection and 1,137,583 vaccine recipients without previous SARS-CoV-2 infection were included. No significant association was observed between previous SARS-CoV-2 infection and AESI or hospitalization. Previous SARS-CoV-2 infection was significantly associated with a lower risk of A&E visit (CoronaVac: hazard ratios [HR] = 0.56, 95% confidence intervals [CI]: 0.32-0.99; Comirnaty: HR = 0.62, 95% CI: 0.47-0.82). CONCLUSION: No safety signal of Covid-19 vaccination was detected from the comparison between vaccine recipients with previous SARS-CoV-2 infection and those without infection.
Subject(s)
COVID-19 Vaccines , COVID-19 , Patient Acceptance of Health Care , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hong Kong/epidemiology , Humans , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effectsABSTRACT
OBJECTIVES: To investigate the relationship between COVID-19 full vaccination (two completed doses) and possible arthritis flare. METHODS: Patients with rheumatoid arthritis (RA) were identified from population-based electronic medical records with vaccination linkage and categorised into BNT162b2 (mRNA vaccine), CoronaVac (inactive virus vaccine) and non-vaccinated groups. The risk of possible arthritis flare after vaccination was compared using a propensity-weighted cohort study design. We defined possible arthritis flare as hospitalisation and outpatient consultation related to RA or reactive arthritis, based on diagnosis records during the episode. Weekly prescriptions of rheumatic drugs since the launch of COVID-19 vaccination programme were compared to complement the findings from a diagnosis-based analysis. RESULTS: Among 5493 patients with RA (BNT162b2: 653; CoronaVac: 671; non-vaccinated: 4169), propensity-scored weighted Poisson regression showed no significant association between arthritis flare and COVID-19 vaccination ((BNT162b2: adjusted incidence rate ratio 0.86, 95% Confidence Interval 0.73 to 1.01); CoronaVac: 0.87 (0.74 to 1.02)). The distribution of weekly rheumatic drug prescriptions showed no significant differences among the three groups since the launch of the mass vaccination programme (all p values >0.1 from Kruskal-Wallis test). CONCLUSIONS: Current evidence does not support that full vaccination of mRNA or inactivated virus COVID-19 vaccines is associated with possible arthritis flare.
Subject(s)
Arthritis, Rheumatoid/chemically induced , BNT162 Vaccine/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Symptom Flare Up , Aged , Arthritis, Rheumatoid/virology , Female , Hong Kong , Humans , Male , Middle Aged , Poisson Distribution , Propensity Score , SARS-CoV-2ABSTRACT
OBJECTIVE: The risk of seizure following BNT162b2 and CoronaVac vaccinations has been sparsely investigated. This study aimed to evaluate this association. METHOD: Patients who had their first seizure-related hospitalization between February 23, 2021 and January 31, 2022, were identified in Hong Kong. All seizure episodes happening on the day of vaccination (day 0) were excluded, since clinicians validated that most of the cases on day 0 were syncopal episodes. Within-individual comparison using a modified self-controlled case series analysis was applied to estimate the incidence rate ratio (IRR) with 95% confidence intervals (CIs) of seizure using conditional Poisson regression. RESULTS: We identified 1656 individuals who had their first seizure-related hospitalization (BNT162b2: 426; CoronaVac: 263; unvaccinated: 967) within the observation period. The incidence of seizure was 1.04 (95% CI .80-1.33) and 1.11 (95% CI .80-1.50) per 100 000 doses of BNT162b2 and CoronaVac administered, respectively. Sixteen and 17 individuals, respectively, received a second dose after having a first seizure within 28 days after the first dose of BNT162b2 and CoronaVac vaccinations. None had recurrent seizures after the second dose. There was no increased risk during day 1-6 after the first (BNT162b2: IRR = 1.39, 95% CI = .75-2.58; CoronaVac: IRR = 1.19, 95% CI = .50-2.83) and second doses (BNT162b2: IRR = 1.36, 95% CI = .72-2.57; CoronaVac: IRR = .71, 95% CI = .22-2.30) of vaccinations. During 7-13, 14-20, and 21-27 days post-vaccination, no association was observed for either vaccine. SIGNIFICANCE: The findings demonstrated no increased risk of seizure following BNT162b2 and CoronaVac vaccinations. Future studies will be warranted to evaluate the risk of seizure following COVID-19 vaccinations in different populations, with subsequent doses to ensure the generalizability.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Research Design , Seizures/epidemiology , Seizures/etiologyABSTRACT
Several studies reported hematological abnormalities after vaccination against the coronavirus disease 2019 (COVID-19). We evaluated the association between COVID-19 vaccines (CoronaVac and BNT162b2) and hematological abnormalities. We conducted nested case-control and self-controlled case series analyses using the data from the Hong Kong Hospital Authority and the Department of Health, HKSAR. Outcomes of interest were thrombocytopenia, leukopenia, and neutropenia. Adjusted odds ratios (aORs), incidence rate ratios (IRRs), and 95% confidence intervals (CIs) were estimated using conditional logistic regression. In total, 1 643 419 people received COVID-19 vaccination (738 609 CoronaVac; 904 810 BNT162b2). We identified 457 and 422 cases after CoronaVac and BNT162b2 vaccination, respectively. For CoronaVac, the incidence of thrombocytopenia, leukopenia, and neutropenia was 2.51, 1.08, and 0.15 per 10 000 doses. For BNT162b2, the corresponding incidence was 1.39, 1.17, and 0.26 per 10 000 doses. The incidence per 10 000 COVID-19 cases were 1254, 2341, and 884, respectively. We only observed an increased risk of leukopenia following the second dose of BNT162b2 (aOR 1.58, 95% CI 1.24-2.02; day 0-14, IRR 2.21; 95% CI 1.59-3.08). There was no increased risk of any hematological abnormalities after CoronaVac vaccination. We observed an increased risk of leukopenia shortly after the second dose of BNT162b2. However, the incidence was much lower than the incidence following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. There was no association between CoronaVac and hematological abnormalities. The benefits of vaccination against COVID-19 still outweigh the risk of hematological abnormalities.
Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Case-Control Studies , Humans , Research Design , SARS-CoV-2ABSTRACT
OBJECTIVE: There is a socioeconomic gradient to depression risks, with more pronounced inequality amid macroenvironmental potential traumatic events. Between mid-2019 and mid-2020, the Hong Kong population experienced drastic societal changes, including the escalating civil unrest and the COVID-19 pandemic. We examined the change of the socioeconomic gradient in depression and the potential intermediary role of daily routine disruptions. METHOD: We conducted repeated territory-wide telephone surveys in July 2019 and July 2020 with 1112 and 2034 population-representative Cantonese-speaking Hong Kong citizens above 15 years old, respectively. Stratified by year, we examined the association between socioeconomic indicators (education attainment, household income, employment status and marital status) and probable depression (nine-item Patient Health Questionnaire [PHQ-9] ⩾ 10) using logistic regression. Differences in the socioeconomic gradient between 2019 and 2020 were tested. Finally, we performed a path analysis to test for the mediating role of daily routine disruptions. RESULTS: Logistic regression showed that higher education attainment in 2019 and being married in 2020 were protective against probable depression. Interaction analysis showed that the inverse association of higher education attainment with probable depression attenuated in 2020 but that of being married increased. Path analysis showed that the mediated effects through daily routine disruptions accounted for 95.9% of the socioeconomic gradient of probable depression in 2020, compared with 13.1% in 2019. CONCLUSION: From July 2019 to July 2020, the mediating role of daily routine disruptions in the socioeconomic gradient of depression in Hong Kong increased. It is thus implied that infection control measures should consider the relevant potential mental health impacts accordingly.