Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Publication year range
1.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33915108

ABSTRACT

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Subject(s)
Host-Pathogen Interactions , Immunity, Cellular , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Receptor, Notch4/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Amphiregulin/pharmacology , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/immunology , Humans , Immunohistochemistry , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Influenza A virus/physiology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Pneumonia, Viral/pathology , Receptor, Notch4/antagonists & inhibitors , Receptor, Notch4/genetics , Severity of Illness Index
2.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619436

ABSTRACT

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Subject(s)
Air Pollution , Developing Countries , Humans , Biomass , Consensus , Societies , Randomized Controlled Trials as Topic , Observational Studies as Topic
3.
Am J Respir Crit Care Med ; 208(12): 1293-1304, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37774011

ABSTRACT

Rationale: The effects of high-dose inhaled nitric oxide on hypoxemia in coronavirus disease (COVID-19) acute respiratory failure are unknown. Objectives: The primary outcome was the change in arterial oxygenation (PaO2/FiO2) at 48 hours. The secondary outcomes included: time to reach a PaO2/FiO2.300mmHg for at least 24 hours, the proportion of participants with a PaO2/FiO2.300mmHg at 28 days, and survival at 28 and at 90 days. Methods: Mechanically ventilated adults with COVID-19 pneumonia were enrolled in a phase II, multicenter, single-blind, randomized controlled parallel-arm trial. Participants in the intervention arm received inhaled nitric oxide at 80 ppm for 48 hours, compared with the control group receiving usual care (without placebo). Measurements and Main Results: A total of 193 participants were included in the modified intention-to-treat analysis. The mean change in PaO2/FiO2 ratio at 48 hours was 28.3mmHg in the intervention group and 21.4mmHg in the control group (mean difference, 39.1mmHg; 95% credible interval [CrI], 18.1 to 60.3). The mean time to reach a PaO2/FiO2.300mmHg in the interventional group was 8.7 days, compared with 8.4 days for the control group (mean difference, 0.44; 95% CrI, 23.63 to 4.53). At 28 days, the proportion of participants attaining a PaO2/FiO2.300mmHg was 27.7% in the inhaled nitric oxide group and 17.2% in the control subjects (risk ratio, 2.03; 95% CrI, 1.11 to 3.86). Duration of ventilation and mortality at 28 and 90 days did not differ. No serious adverse events were reported. Conclusions: The use of high-dose inhaled nitric oxide resulted in an improvement of PaO2/FiO2 at 48 hours compared with usual care in adults with acute hypoxemic respiratory failure due to COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , Nitric Oxide/therapeutic use , COVID-19/complications , Single-Blind Method , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/etiology , Respiration, Artificial , Administration, Inhalation
4.
J Asthma ; 60(3): 479-486, 2023 03.
Article in English | MEDLINE | ID: mdl-35341426

ABSTRACT

OBJECTIVE: The School Inner-City Asthma Intervention Study 2 (SICAS 2) tested interventions to reduce exposures in classrooms of students with asthma. The objective of this post-hoc analysis was limited to evaluating the effect of high-efficiency particulate (HEPA) filtration interventions on mold levels as quantified using the Environmental Relative Moldiness Index (ERMI) and the possible improvement in the students' asthma, as quantified by spirometry testing. METHODS: Pre-intervention dust samples were collected at the beginning of the school year from classrooms and corresponding homes of students with asthma (n = 150). Follow-up dust samples were collected in the classrooms at the end of the HEPA or Sham intervention. For each dust sample, ERMI values and the Group 1 and Group 2 mold levels (components of the ERMI metric) were quantified. In addition, each student's lung function was evaluated by spirometry testing, specifically the percentage predicted forced expiratory volume at 1 sec (FEV1%), before and at the end of the intervention. RESULTS: For those students with a higher Group 1 mold level in their pre-intervention classroom than home (n = 94), the FEV1% results for those students was significantly (p < 0.05) inversely correlated with the Group 1 level in their classrooms. After the HEPA intervention, the average Group 1 and ERMI values were significantly lowered, and the average FEV1% test results significantly increased by an average of 4.22% for students in HEPA compared to Sham classrooms. CONCLUSIONS: HEPA intervention in classrooms reduced Group 1 and ERMI values, which corresponded to improvements in the students' FEV1% test results.


Subject(s)
Air Pollution, Indoor , Asthma , Humans , Asthma/therapy , Housing , Dust/analysis , Fungi , Spirometry , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis
5.
Indoor Air ; 32(2): e12986, 2022 02.
Article in English | MEDLINE | ID: mdl-35225388

ABSTRACT

Solar lighting is an alternative to polluting kerosene and other fuel-based lighting devices relied upon by millions of families in resource-limited settings. Whether solar lighting provides sustained displacement of fuel-based lighting sources and reductions in personal exposure to fine particulate matter (PM2 .5 ) and black carbon (BC) has not been examined in randomized controlled trials. Eighty adult women living in rural Uganda who utilized fuel-based (candles and kerosene lamps) and/or clean (solar, grid, and battery-powered devices) lighting were randomized in a 1:1 ratio to receive a home solar lighting system at no cost to study participants (ClinicalTrials.gov NCT03351504). Among intervention group participants, kerosene lamps were completely displaced in 92% of households using them. The intervention led to an average exposure reduction of 36.1 µg/m3 (95% CI -70.3 to -2.0) in PM2 .5 and 10.8 µg/m3 (95% CI -17.6 to -4.1) in BC, corresponding to a reduction from baseline of 37% and 91%, respectively. Reductions were greatest among participants using kerosene lamps. Displacement of kerosene lamps and personal exposure reductions were sustained over 12 months of follow-up. Solar lighting presents an immediate opportunity for achieving sustained reductions in personal exposure to PM2.5 and BC and should be considered in household air pollution intervention packages.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cooking , Environmental Exposure/analysis , Female , Humans , Lighting , Particulate Matter/analysis , Uganda
6.
J Allergy Clin Immunol ; 145(1): 119-126.e4, 2020 01.
Article in English | MEDLINE | ID: mdl-31557500

ABSTRACT

BACKGROUND: Traffic proximity has been associated with adverse respiratory health outcomes. Less is known about the combined impact of residential and school exposures on pediatric asthma. OBJECTIVE: We sought to use spatial analysis methodology to analyze residential and school proximity to major roadways and pediatric asthma morbidity. METHODS: The School Inner-City Asthma Study (n = 350) recruited school-aged children with asthma. Each participant's school and home addresses were geocoded, and distances from major roadways were measured to calculate a composite measure accounting for both home and school traffic exposure. Generalized estimating equation models were clustered by subject and adjusted for age, race/ethnicity, sex, income, environmental tobacco smoke, controller medication, upper respiratory tract infections, and seasonality. RESULTS: The majority of participants (62%) attended schools within 100 m from major roadways, and 40% also resided within 100 m of major roadways. In multivariate analyses major roadway proximity was independently associated with increased asthma symptom days. At greater than the threshold of 100 m, children had 29% less odds of a symptom day over the past 2 weeks for each 100-m increase in distance from a major roadway (odds ratio, 0.71; 95% CI, 0.58-0.87; P < .01). Children farther from a major roadway also had significantly less reported health care use (odds ratio, 0.63; 95% CI, 0.47-0.85; P < .01) and were significantly less likely to have poor asthma control (odds ratio, 0.80; 95% CI, 0.69-0.94; P < .01). There was not a meaningful association between distance to a major roadway and lung function outcomes. CONCLUSIONS: Proximity to a major roadway, a composite measure of home and school exposure but primarily driven by home exposure, was associated with greater asthma morbidity. More studies are needed to evaluate the independent effect of school distance to a roadway on asthma morbidity.


Subject(s)
Asthma , Environmental Exposure/adverse effects , Schools , Vehicle Emissions/toxicity , Adolescent , Age Factors , Asthma/epidemiology , Asthma/etiology , Child , Child, Preschool , Cities , Female , Humans , Male , Prospective Studies
7.
J Allergy Clin Immunol ; 146(4): 813-820.e2, 2020 10.
Article in English | MEDLINE | ID: mdl-32197971

ABSTRACT

BACKGROUND: Sparse data address the effects of nitrogen dioxide (NO2) exposure in inner-city schools on obese students with asthma. OBJECTIVE: We sought to evaluate relationships between classroom NO2 exposure and asthma symptoms and morbidity by body mass index (BMI) category. METHODS: The School Inner-City Asthma Study enrolled students aged 4 to 13 years with asthma from 37 inner-city schools. Students had baseline determination of BMI percentile. Asthma symptoms, morbidity, pulmonary inflammation, and lung function were monitored throughout the subsequent academic year. Classroom NO2 data, linked to enrolled students, were collected twice per year. We determined the relationship between classroom NO2 levels and asthma outcomes by BMI stratification. RESULTS: A total of 271 predominantly black (35%) or Hispanic students (35%) were included in analyses. Fifty percent were normal weight (5-84th BMI percentile), 15% overweight (≥85-94th BMI percentile), and 35% obese (≥95th BMI percentile). For each 10-parts per billion increase in NO2, obese students had a significant increase in the odds of having an asthma symptom day (odds ratio [OR], 1.86; 95% CI, 1.15-3.02) and in days caregiver changed plans (OR, 4.24; 95% CI, 2.33-7.70), which was significantly different than normal weight students who exhibited no relationship between NO2 exposure and symptom days (OR, 0.90; 95% CI, 0.57-1.42; pairwise interaction P = .03) and change in caregiver plans (OR, 1.37; 95% CI, 0.67-2.82; pairwise interaction P = .02). Relationships between NO2 levels and lung function and fractional exhaled nitric oxide did not differ by BMI category. If we applied a conservative Holm-Bonferroni correction for 16 comparisons (obese vs normal weight and overweight vs normal weight for 8 outcomes), these findings would not meet statistical significance (all P > .003). CONCLUSIONS: Obese BMI status appears to increase susceptibility to classroom NO2 exposure effects on asthma symptoms in inner-city children. Environmental interventions targeting indoor school NO2 levels may improve asthma health for obese children. Although our findings would not remain statistically significant after adjustment for multiple comparisons, the large effect sizes warrant future study of the interaction of obesity and pollution in pediatric asthma.


Subject(s)
Asthma/epidemiology , Asthma/etiology , Environmental Exposure/adverse effects , Nitrogen Dioxide/adverse effects , Obesity/complications , Obesity/epidemiology , Adolescent , Air Pollution, Indoor , Body Mass Index , Child , Child, Preschool , Female , Humans , Male , Morbidity , Prognosis , Schools , Urban Population
8.
JAMA ; 326(9): 839-850, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34547084

ABSTRACT

Importance: School and classroom allergens and particles are associated with asthma morbidity, but the benefit of environmental remediation is not known. Objective: To determine whether use of a school-wide integrated pest management (IPM) program or high-efficiency particulate air (HEPA) filter purifiers in the classrooms improve asthma symptoms in students with active asthma. Design, Setting, and Participants: Factorial randomized clinical trial of a school-wide IPM program and HEPA filter purifiers in the classrooms was conducted from 2015 to 2020 (School Inner-City Asthma Intervention Study). There were 236 students with active asthma attending 41 participating urban elementary schools located in the Northeastern US who were randomized to IPM by school and HEPA filter purifiers by classroom. The date of final follow-up was June 20, 2020. Interventions: The school-wide IPM program consisted of application of rodenticide, sealing entry points, trap placement, targeted cleaning, and brief educational handouts for school staff. Infestation was assessed every 3 months, with additional treatments as needed. Control schools received no IPM, cleaning, or education. Classroom portable HEPA filter purifiers were deployed and the filters were changed every 3 months. Control classrooms received sham HEPA filters that looked and sounded like active HEPA filter purifiers. Randomization was done independently (split-plot design), with matching by the number of enrolled students to ensure a nearly exact 1:1 student ratio for each intervention with 118 students randomized to each group. Participants, investigators, and those assessing outcomes were blinded to the interventions. Main Outcomes and Measures: The primary outcome was the number of symptom-days with asthma during a 2-week period. Symptom-days were assessed every 2 months during the 10 months after randomization. Results: Among the 236 students who were randomized (mean age, 8.1 [SD, 2.0] years; 113 [48%] female), all completed the trial. At baseline, the 2-week mean was 2.2 (SD, 3.9) symptom-days with asthma and 98% of the classrooms had detectable levels of mouse allergen. The results were pooled because there was no statistically significant difference between the 2 interventions (P = .18 for interaction). During a 2-week period, the mean was 1.5 symptom-days with asthma after use of the school-wide IPM program vs 1.9 symptom-days after no IPM across the school year (incidence rate ratio, 0.71 [95% CI, 0.38-1.33]), which was not statistically significantly different. During a 2-week period, the mean was 1.6 symptom-days with asthma after use of HEPA filter purifiers in the classrooms vs 1.8 symptom-days after use of sham HEPA filter purifiers across the school year (incidence rate ratio, 1.47 [95% CI, 0.79-2.75]), which was not statistically significantly different. There were no intervention-related adverse events. Conclusions and Relevance: Among children with active asthma, use of a school-wide IPM program or classroom HEPA filter purifiers did not significantly reduce symptom-days with asthma. However, interpretation of the study findings may need to consider allergen levels, particle exposures, and asthma symptoms at baseline. Trial Registration: ClinicalTrials.gov Identifier: NCT02291302.


Subject(s)
Air Filters , Air Pollution, Indoor/prevention & control , Asthma/prevention & control , Environmental Exposure/prevention & control , Rodent Control , Schools , Air Pollution, Indoor/adverse effects , Allergens/analysis , Child , Environmental Exposure/adverse effects , Female , Humans , Male , Rodenticides
10.
Ann Allergy Asthma Immunol ; 122(6): 610-615.e1, 2019 06.
Article in English | MEDLINE | ID: mdl-30904580

ABSTRACT

BACKGROUND: Home fungus exposures may be associated with development or worsening of asthma. Little is known about the effects of school/classroom fungus exposures on asthma morbidity in students. OBJECTIVE: To evaluate the association of school-based fungus exposures on asthma symptoms in both fungus-sensitized and nonsensitized students with asthma. METHODS: In this prospective study, 280 children with asthma from 37 inner-city schools were phenotypically characterized at baseline and followed-up for 1 year. Fungal spores were collected by using a Burkard air sampler twice during the school year. Clinical outcomes were evaluated throughout the school year and linked to classroom-specific airborne spore sampling. The primary outcome was days with asthma symptoms per 2-week period. RESULTS: Fungal spores were present in all classroom samples. The geometric mean of the total fungi was 316.9 spores/m3 and ranged from 15.0 to 59,345.7 spores/m3. There was variability in total fungus quantity between schools and classrooms within the same school. Mitospores were the most commonly detected fungal grouping. Investigation of the individual mitospores revealed that exposure to Alternaria was significantly associated with asthma symptom days in students sensitized to Alternaria (OR = 3.61, CI = 1.34-9.76, P = .01), but not in children not sensitized to Alternaria (OR = 1.04, CI = 0.72-1.49, P = .85). Students sensitized to Alternaria and exposed to high levels (≥75th percentile exposure) had 3.2 more symptom days per 2-week period as compared with students sensitized but exposed to lower levels. CONCLUSION: Children with asthma who are sensitized to Alternaria and exposed to this fungus in their classroom may have significantly more days with asthma symptoms than those who were sensitized and not exposed. CLINICAL TRIAL REGISTRATION: Clinicaltrials.govNCT01756391.


Subject(s)
Allergens/immunology , Alternaria/immunology , Asthma/immunology , Environmental Exposure/statistics & numerical data , Hypersensitivity/epidemiology , Spores, Fungal/immunology , Urban Population , Air Microbiology , Air Pollution, Indoor , Asthma/epidemiology , Child , Child, Preschool , Female , Humans , Male , Prospective Studies , Schools , United States/epidemiology
11.
Environ Health ; 18(1): 73, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31429759

ABSTRACT

BACKGROUND: Most of the global burden of pollution-related morbidity and mortality is believed to occur in resource-limited settings, where HIV serostatus and sex may influence the relationship between air pollution exposure and respiratory morbidity. The lack of air quality monitoring networks in these settings limits progress in measuring global disparities in pollution-related health. Personal carbon monoxide monitoring may identify sub-populations at heightened risk for air pollution-associated respiratory morbidity in regions of the world where the financial cost of air quality monitoring networks is prohibitive. METHODS: From September 2015 through May 2017, we measured 48-h ambulatory carbon monoxide (CO) exposure in a longitudinal cohort of HIV-infected and uninfected adults in rural southwestern Uganda. We fit generalized mixed effects models to identify correlates of CO exposure exceeding international air quality thresholds, quantify the relationship between CO exposure and respiratory symptoms, and explore potential effect modification by sex and HIV serostatus. RESULTS: Two hundred and sixty study participants completed 419 sampling periods. Personal CO exposure exceeded international thresholds for 50 (19%) participants. In covariate-adjusted models, living in a home where charcoal was the main cooking fuel was associated with CO exposure exceeding international thresholds (adjusted odds ratio [AOR] 11.3, 95% confidence interval [95%CI] 4.7-27.4). In sex-stratified models, higher CO exposure was associated with increased odds of respiratory symptoms among women (AOR 3.3, 95%CI 1.1-10.0) but not men (AOR 1.3, 95%CI 0.4-4.4). In HIV-stratified models, higher CO exposure was associated with increased odds of respiratory symptoms among HIV-infected (AOR 2.5, 95%CI 1.01-6.0) but not HIV-uninfected (AOR 1.4, 95%CI 0.1-14.4) participants. CONCLUSIONS: In a cohort in rural Uganda, personal CO exposure frequently exceeded international thresholds, correlated with biomass exposure, and was associated with respiratory symptoms among women and people living with HIV. Our results provide support for the use of ambulatory CO monitoring as a low-cost, feasible method to identify subgroups with heightened vulnerability to pollution-related respiratory morbidity in resource-limited settings and identify subgroups that may have increased susceptibility to pollution-associated respiratory morbidity.


Subject(s)
Carbon Monoxide/analysis , Environmental Exposure/analysis , HIV Infections/epidemiology , HIV Seroprevalence , Respiratory Tract Diseases/epidemiology , Rural Population/statistics & numerical data , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , Models, Theoretical , Respiratory Tract Diseases/etiology , Sex Factors , Uganda/epidemiology
12.
J Allergy Clin Immunol ; 141(6): 2249-2255.e2, 2018 06.
Article in English | MEDLINE | ID: mdl-28988796

ABSTRACT

BACKGROUND: Ambient and home exposure to nitrogen dioxide (NO2) causes asthma symptoms and decreased lung function in children with asthma. Little is known about the health effects of school classroom pollution exposure. OBJECTIVE: We aimed to determine the effect of indoor classroom NO2 on lung function and symptoms in inner-city school children with asthma. METHODS: Children enrolled in the School Inner-City Asthma Study were followed for 1 academic year. Subjects performed spirometry and had fraction of exhaled nitric oxide values measured twice during the school year at school. Classroom NO2 was collected by means of passive sampling for 1-week periods twice per year, coinciding with lung function testing. Generalized estimating equation models assessed lung function and symptom relationships with the temporally nearest classroom NO2 level. RESULTS: The mean NO2 value was 11.1 ppb (range, 4.3-29.7 ppb). In total, exposure data were available for 296 subjects, 188 of whom had complete spirometric data. At greater than a threshold of 8 ppb of NO2 and after adjusting for race and season (spirometry standardized by age, height, and sex), NO2 levels were associated highly with airflow obstruction, such that each 10-ppb increase in NO2 level was associated with a 5% decrease in FEV1/forced vital capacity ratio (ß = -0.05; 95% CI, -0.08 to -0.02; P = .01). Percent predicted forced expiratory flow between the 25th and 75th percentile of forced vital capacity was also inversely associated with higher NO2 exposure (ß = -22.8; 95% CI, -36.0 to -9.7; P = .01). There was no significant association of NO2 levels with percent predicted FEV1, fraction of exhaled nitric oxide, or asthma symptoms. Additionally, there was no effect modification of atopy on lung function or symptom outcomes. CONCLUSION: In children with asthma, indoor classroom NO2 levels can be associated with increased airflow obstruction.


Subject(s)
Air Pollution, Indoor/analysis , Asthma , Nitrogen Dioxide/analysis , Oxidants, Photochemical/analysis , Schools , Adolescent , Air Pollution, Indoor/adverse effects , Child , Child, Preschool , Environmental Exposure/adverse effects , Female , Humans , Male , Nitrogen Dioxide/adverse effects , Oxidants, Photochemical/adverse effects , Respiratory Function Tests , Urban Population
13.
World J Surg ; 41(3): 644-649, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27837236

ABSTRACT

BACKGROUND: In high-resource settings, even mild anaemia is associated with an increased risk of post-operative complications. Whether this is true in low-resource settings is unclear. We aimed to evaluate the effect of anaemia on surgical outcomes in the Republic of Congo and Madagascar. METHOD: It is a retrospective chart review of 2064 non-pregnant patients undergoing elective surgery with Mercy Ships. Logistic regression was used to determine the association between pre-operative anaemia and pre-defined surgical complications, adjusted for age, gender, surgical specialty, and country. RESULTS: The average age of patients was 27.2 years; 56.7% were male. Sixty-two percent of patients were not anaemic, and 22.7, 13.9 and 1.4% met sex-related criteria for mild, moderate and severe anaemia, respectively. In adjusted analyses, the severe anaemia group had an 8.58 [3.65, 19.49] higher odds of experiencing any surgical complication (p < 0.001) compared to non-anaemic patients. Analysis of each complication showed a 33.13 [9.57, 110.39] higher odds of unexpected ICU admission (p < 0.001); a 7.29 [1.98, 21.45] higher odds of surgical site infection (p < 0.001); and 7.48 [1.79, 25.78] higher odds of requiring hospital readmission (p < 0.001). Evaluating other anaemia categories, only those with moderate anaemia had a higher risk of requiring ICU admission (odds ratio 2.75 [1.00, 7.04], p = 0.04) compared to those without anaemia. CONCLUSION: Our results indicate that in low-income settings, severe anaemia is associated with an increased risk of post-operative complications including unexpected ICU admission, surgical site infection and hospital readmission, whereas mild anaemia was not associated with increased post-operative complications.


Subject(s)
Anemia/epidemiology , Developing Countries , Postoperative Complications/epidemiology , Adult , Africa/epidemiology , Female , Humans , Intensive Care Units , Male , Medical Missions , Patient Admission/statistics & numerical data , Patient Readmission/statistics & numerical data , Preoperative Period , Retrospective Studies , Severity of Illness Index , Young Adult
14.
Occup Environ Med ; 72(8): 546-552, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25666844

ABSTRACT

OBJECTIVES: The purpose of this study is to determine the trajectory of lung function change after exposure cessation to occupational organic dust exposure, and to identify factors that modify improvement. METHODS: The Shanghai Textile Worker Study is a longitudinal study of 447 cotton workers exposed to endotoxin-containing dust and 472 silk workers exposed to non-endotoxin-containing dust. Spirometry was performed at 5-year intervals. Air sampling was performed to estimate individual cumulative exposures. The effect of work cessation on forced expiratory volume in 1 s (FEV1) was modelled using generalised additive mixed effects models to identify the trajectory of FEV1 recovery. Linear mixed effects models incorporating interaction terms were used to identify modifiers of FEV1 recovery. Loss to follow-up was accounted for with inverse probability of censoring weights. RESULTS: 74.2% of the original cohort still alive participated in 2011. Generalised additive mixed models identified a non-linear improvement in FEV1 for all workers after exposure cessation, with no plateau noted 25 years after retirement. Linear mixed effects models incorporating interaction terms identified prior endotoxin exposure (p=0.01) and male gender (p=0.002) as risk factors for impaired FEV1 improvement after exposure cessation. After adjusting for gender, smoking delayed the onset of FEV1 gain but did not affect the overall magnitude of change. CONCLUSIONS: Lung function improvement after cessation of exposure to organic dust is sustained. Endotoxin exposure and male gender are risk factors for less FEV1 improvement.


Subject(s)
Air Pollutants, Occupational/adverse effects , Dust , Endotoxins/adverse effects , Lung/drug effects , Occupational Exposure/adverse effects , Recovery of Function , Textile Industry , China , Employment , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Longitudinal Studies , Lung/physiopathology , Lung Diseases/physiopathology , Lung Diseases/rehabilitation , Male , Occupational Diseases/physiopathology , Occupational Diseases/rehabilitation , Risk Factors , Smoking , Textiles
15.
Occup Environ Med ; 71(2): 118-125, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24297825

ABSTRACT

OBJECTIVE: Airborne endotoxin exposure has adverse and protective health effects. Studies show men have augmented acute inflammatory responses to endotoxin. In this longitudinal cohort study we investigated the effect of long-term exposure to endotoxin in cotton dust on health, and determined whether these effects differ by gender. METHODS: In the Shanghai Textile Worker Study, 447 cotton and 472 control silk textile workers were followed from 1981 to 2011 with repeated measures of occupational endotoxin exposure, spirometry and health questionnaires. Impaired lung function was defined as a decline in forced expiratory volume in one second to less than the 5th centile of population predicted. Death was ascertained by death registries. We used Cox proportional hazards models to assess the effect of endotoxin exposure on the time to development of impaired lung function and death. RESULTS: 128 deaths and 164 diagnoses of impaired lung function were ascertained between 1981 and 2011. HRs for the composite end point of impaired lung function or death was 1.47 (95% CI 1.09 to 1.97) for cotton vs silk workers and 1.04 (95% CI 1.01 to 1.07) per 10 000 endotoxin units (EU)/m(3)-years increase in exposure. HRs for all-cause mortality was 1.36 (95% CI 0.93 to 1.99) for cotton vs silk workers and 1.04 (95% CI 0.99 to 1.08) per 10 000 EU/m(3)-years. The risk associated with occupational endotoxin exposure was elevated only in men. CONCLUSIONS: Occupational endotoxin exposure is associated with an increase in the risk of impaired lung function and all-cause mortality in men.


Subject(s)
Air Pollutants, Occupational/toxicity , Endotoxins/toxicity , Lung Diseases/chemically induced , Occupational Exposure/adverse effects , Textile Industry , Adult , Air Pollutants, Occupational/analysis , China/epidemiology , Cotton Fiber , Dust , Female , Humans , Longitudinal Studies , Lung Diseases/epidemiology , Lung Diseases/mortality , Male , Middle Aged , Occupational Exposure/analysis , Sex Distribution , Surveys and Questionnaires
18.
Res Sq ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38343829

ABSTRACT

Background: Most respiratory microbiome studies have focused on amplicon rather than metagenomics sequencing due to high host DNA content. We evaluated efficacy of five host DNA depletion methods on previously frozen human bronchoalveolar lavage (BAL), nasal swabs, and sputum prior to metagenomic sequencing. Results: Median sequencing depth was 76.4 million reads per sample. Untreated nasal, sputum and BAL samples had 94.1%, 99.2%, and 99.7% host-reads. The effect of host depletion differed by sample type. Most treatment methods increased microbial reads, species richness and predicted functional richness; the increase in species and predicted functional richness was mediated by higher effective sequencing depth. For BAL and nasal samples, most methods did not change Morisita-Horn dissimilarity suggesting limited bias introduced by host depletion. Conclusions: Metagenomics sequencing without host depletion will underestimate microbial diversity of most respiratory samples due to shallow effective sequencing depth and is not recommended. Optimal host depletion methods vary by sample type.

20.
Crit Care Med ; 41(4): 954-62, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23385106

ABSTRACT

OBJECTIVES: To determine if a prediction rule for hospital mortality using dynamic variables in response to treatment of hypotension in patients with sepsis performs better than current models. DESIGN: Retrospective cohort study. SETTING: All ICUs at a tertiary care hospital. PATIENTS: Adult patients admitted to ICUs between 2001 and 2007 of whom 2,113 met inclusion criteria and had sufficient data. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a prediction algorithm for hospital mortality in patients with sepsis and hypotension requiring medical intervention using data from the Multiparameter Intelligent Monitoring in Intensive Care II. We extracted 189 candidate variables, including treatments, physiologic variables and laboratory values collected before, during, and after a hypotensive episode. Thirty predictors were identified using a genetic algorithm on a training set (n=1500) and validated with a logistic regression model on an independent validation set (n=613). The final prediction algorithm used included dynamic information and had good discrimination (area under the receiver operating curve=82.0%) and calibration (Hosmer-Lemeshow C statistic=10.43, p=0.06). This model was compared with Acute Physiology and Chronic Health Evaluation IV using reclassification indices and was found to be superior with an Net Reclassification Improvement of 0.19 (p<0.001) and an Integrated Discrimination Improvement of 0.09 (p<0.001). CONCLUSIONS: Hospital mortality predictions based on dynamic variables surrounding a hypotensive event is a new approach to predicting prognosis. A model using these variables has good discrimination and calibration and offers additional predictive prognostic information beyond established ones.


Subject(s)
Critical Illness/mortality , Hospital Mortality/trends , Hypotension/mortality , Intensive Care Units , Sepsis/mortality , Adult , Aged , Aged, 80 and over , Algorithms , Cohort Studies , Comorbidity , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Predictive Value of Tests , Prognosis , Retrospective Studies , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL