Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Small ; 20(2): e2305327, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670556

ABSTRACT

Low-cost fabric-based top-emitting polymer light-emitting devices (Fa-TPLEDs) have aroused increasing attention due to their remarkable potential applications in wearable displays. However, it is still challenging to realize efficient all-solution-processed devices from bottom electrodes to top electrodes with large-scale fabrication. Here, a smooth reflective Ag cathode integrated on fabric by one-step silver mirror reaction and a composite transparent anode of polydimethylsiloxane/silver nanowires/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) via a water-assisted peeling method are presented, both of which possess excellent optoelectrical properties and robust mechanical flexibility. The Fa-TPLEDs are constructed by spin-coating functional layers on the bottom reflective cathodes and laminating the top transparent anodes. The Fa-TPLEDs show a current efficiency of 16.3 cd A-1 , an external quantum efficiency of 4.9% and angle-independent electroluminescence spectra. In addition, the Fa-TPLEDs possess excellent mechanical stability, maintaining a current efficiency of 14.3 cd A-1 after 200 bending cycles at a radius of 4 mm. The results demonstrate that the integration of solution-processed reflective cathodes and transparent anodes sheds light on a new avenue to construct low-cost and efficient fabric-based devices, showing great potential applications in emerging smart flexible/wearable electronics.

2.
Small ; 19(50): e2304677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632318

ABSTRACT

To achieve high-performance solid-state lithium-metal batteries (SSLMBs), solid electrolytes with high ionic conductivity, high oxidative stability, and high mechanical strength are necessary. However, balancing these characteristics remains dramatically challenging and is still not well addressed. Herein, a simple yet effective design strategy is presented for the development of high-performance polymer electrolytes (PEs) by exploring the synergistic effect between dynamic H-bonded networks and conductive zwitterionic nanochannels. Multiple weak intermolecular interactions along with ample nanochannels lead to high oxidative stability (over 5 V), improved mechanical properties (strain of 1320%), and fast ion transport (ionic conductivity of 10-4 S cm-1 ) of PEs. The amphoteric ionic functional units also effectively regulate the lithium ion distribution and confine the anion transport to achieve uniform lithium ion deposition. As a result, the assembled SSLMBs exhibit excellent capacity retention and long-term cycle stability (average Coulombic efficiency: 99.5%, >1000 cycles with LiFePO4 cathode; initial capacity: 202 mAh g-1 , average Coulombic efficiency: 96%, >230 cycles with LiNi0.8 Co0.1 Mn0.1 O2 cathode). It is exciting to note that the corresponding flexible cells can be cycled stably and can withstand severe deformation. The resulting polyzwitterion-mediated PE therefore offers great promise for the next-generation safe and high-energy-density flexible energy storage devices.

3.
Chem Soc Rev ; 51(8): 3181-3225, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35348147

ABSTRACT

With the aim of addressing the global warming issue and fossil energy shortage, eco-friendly and sustainable renewable energy technologies are urgently needed. In comparison to energy conversion, studies on energy storage fall behind and remain largely to be explored. By storing energy from electrochemical processes at the electrode surface, supercapacitors (SCs) bridge the performance gap between electrostatic double-layer capacitors and batteries. Organic electrode materials have drawn extensive attention because of their special power density, good round trip efficiency and excellent cycle stability. Porous organic polymers (POPs) have drawn extensive attention as attractive electrode materials in SCs. In this review, we present and discuss recent advancements and design principles of POPs as efficient electrode materials for SCs from the perspectives of synthetic strategies and the structure-performance relationships of POPs. Finally, we put forward the outlook and prospects of POPs for SCs.

4.
Angew Chem Int Ed Engl ; 62(2): e202213749, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36350657

ABSTRACT

Ultra-flexible stretchable organic light-emitting diodes (OLEDs) are emerging as a basic component of flexible electronics and human-machine interfaces. However, the brightness and efficiency of stretchable OLEDs remain still far inferior to their rigid counterparts, owing to the scarcity of satisfactory stretchable electroluminescent materials. Herein, we explore a general concept based on the self-confinement effect to dramatically improve the stretchability of elastomers, without affecting electroluminescent properties. The balanced rigid/flexible chain dynamics under self-confinement significantly reduces the modulus of the elastomers, resulting in the maximum strain reaching 806 %. Ultra-flexible stretchable OLEDs have been constructed based on the resulting ISEEs, achieving unprecedented high-performance non-blended stretchable OLEDs. The results suggest an effective molecular design strategy for highly deformable stretchable displays and flexible electronics.

5.
Small ; 18(24): e2200010, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35445540

ABSTRACT

Lithium metal, as the "Holy Grail" of lithium battery anodes, is promising to be used in the next-generation of high-energy-density storage devices. However, serious safety risk and poor cycle performance are inevitable when bare lithium foil is used as the anode material, due to the uncontrolled growth of lithium dendrites, unstable solid electrolyte interface, and infinite volume expansion of lithium during cycling, which largely hinder the further commercial application of lithium metal batteries (LMBs). The utilization of up-to-date current collectors with specific composition and structure is believed to be effective to overcome these shortcomings. However, a systematic evaluation of the merit of different current collector materials for realizing high-performance lithium metal anodes is still lacking. This review summarizes the fashionable advanced current collector materials for long-life LMBs in recent years. The superiorities and related electrochemical performances by using these current collector materials are discussed in detail. It is expected that this review may promote the rational choice of appreciatory current collector materials with unique structure designs to extend the cycle life of lithium metal anodes for achieving the next-generation of high-energy-density LMBs.

6.
Chemistry ; 28(63): e202202336, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35946344

ABSTRACT

Molecular motions are closely associated with the behaviors and properties of organic materials. However, monitoring molecular motions is challenging. Herein, a chiral supramolecular system consisting of L-/D-phenylalanine (LPF/DPF) as a chiral inducer and an achiral tetraphenylethene derivative (TPEF) as a molecular rotor has been proposed and explored for real-time discriminating the supramolecular motions by the visualization of circularly polarized luminescence (CPL) signal variations. Derived from the ordered molecular motions of TPEF induced by LPF/DPF, highly organized aggregates have been progressively assembled in a controlled manner with differentiated morphologies, including spherical particles, one-dimensional fibers, and floor-shaped supercrystals. Notably, increasing level of ordered aggregates, in turn, led to quenching emissions, while the CPL signals have been dramatically amplified accompanying by a sharp enhancement of luminescence dissymmetry factors (glum ) from nearly 0 to -0.1. The significant amplification of CPL is attributed to the ordered aggregates of supramolecules, leading to the decrease of electric transition dipole moments in supramolecular system. As a result of the chiral supramolecular motions powered by supramolecular crystallization, the supramolecular motions are conveniently discriminated by visual CPL signal variation with an enhancement of glum value from 0 to -0.1 in real time.


Subject(s)
Luminescence , Stereoisomerism , Motion
7.
Inorg Chem ; 60(17): 13359-13365, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34492766

ABSTRACT

A multidentate tetrazole molecule based on a TPE core, tetrakis[4-(1H-tetrazol-5-yl)phenyl]ethylene (H4ttpe) with combined advantages of two functional groups, was synthesized by cycloaddition reaction of the corresponding organic benzonitrile derivative and azide salt. Coordination self-assembly of the in situ formed aggregation-induced emission polytetrazole luminogen with cadmium(II) ion produces an unprecedented tetrazolyl-TPE-based microporous cationic metal-organic framework (MOF) with an unusual (4,5,8T14)-connected net of {[Cd4(H4ttpe)2Cl5]·(N3)3}, in which the H4ttpe serves as the first undeprotonated tetrazole ligand of octa-coordinating bridging mode. We investigate, for the first time, the utilization of the luminescent MOF containing a TPE core decorated with tetrazolyl terminals for explosive detection based on the change in fluorescence intensity, which shows high selectivity and efficiency in fluorescence quenching toward TNP detection in water solution.

8.
Chem Soc Rev ; 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32672260

ABSTRACT

Lasing applications have spread over various aspects of human life. To meet the developing trends of the laser industry towards being miniature, portable, and highly integrated, new laser technologies are in urgent demand. Organic semiconductors are promising gain medium candidates for novel laser devices, due to their convenient processing techniques, ease of spectral and chemical tuning, low refractive indexes, mechanical flexibilities, and low thresholds, etc. organic solid-state lasers (OSSLs) open up a new horizon of simple, low-cost, time-saving, versatile and environmental-friendly manufacturing technologies for new and desirable laser structures (micro-, asymmetric, flexible, etc.) to unleash the full potential of semiconductor lasers for future electronics. Besides the development of optical feedback structures, the design and synthesis of robust organic gain media is critical as a vigorous aspect of OSSLs. Herein, we provide a comprehensive review of recent advances in organic gain materials, mainly focused on organic semiconductors for OSSLs. The significant breakthroughs toward electrical pumping of OSSLs are emphasized. Opportunities, challenges and future research directions for the design of organic gain media are also discussed.

9.
Angew Chem Int Ed Engl ; 60(18): 10007-10015, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33476095

ABSTRACT

Frequency-upconverted fluorescence and stimulated emission induced by multiphoton absorption (MPA) have attracted much interest. As compared with low-order MPA processes, the construction of high-order MPA processes is highly desirable and rather attractive, yet remains a formidable challenge due to its inherent low transition probability. We report the observation of the first experimental frequency-upconverted fluorescence and stimulated emission by simultaneous six-photon excitation in an organic molecular system. The well-designed organic conjugated system based on cross-shaped spiro-fused ladder-type oligo(p-phenylene)s (SpL-z, z=1-3) manifests reasonably high MPA cross-sections and brilliant luminescence emission simultaneously. The six-photon absorption cross-section of SpL-3 with an extended π-conjugation was evaluated as 8.67×10-169  cm12 s5 photon-5 . Exceptionally efficient 2- to 6-photon excited stimulated emission was achieved under near-infrared laser excitation.

10.
Chemistry ; 26(14): 3103-3112, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31821622

ABSTRACT

A set of fluorene-capped pendant conjugated molecules (T-m and T-p), which consist of a triazine center with three carbazole substituents as the donor-acceptor (D-A) type pendant structure, were designed, synthesized, and investigated as gain media for organic semiconductor lasers (OSLs). In particular, varying the capping positions of the fluorene units on the pendant core structures results in significantly different intramolecular charge transfer (ICT) properties, where T-m manifested depressed ICT characteristic and high fluorescence quantum yield. The lowest amplified spontaneous emission (ASE) threshold in neat films was recorded as 1.9 µJ cm-2 for T-m and 83.8 µJ cm-2 for T-p, which indicated that the depressed ICT characteristics in the case of T-m help to enhance the ASE properties. Remarkably, the ASE threshold remained almost unchanged and the ASE spectra showed very small shifts (within 1 nm) for T-m with film samples annealed up to 180 °C in open air. In contrast, its linear counterpart 2FEtCz-m showed a clearly increased ASE threshold upon annealing above 100 °C. The results suggest that the selective construction of conjugated pendant molecules with depressed ICT characteristics is beneficial for finely modulating the optical and electrical properties as well as improving the thermostability and photostability, which manifests the great potential as a robust gain media for OSLs.

11.
Chem Soc Rev ; 48(12): 3229-3264, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31119231

ABSTRACT

Supercapacitors hold great promise for future electronic systems that are moving towards being flexible, portable, and highly integrated, due to their superior power density, stability and cycle lives. Printed electronics represents a paradigm shift in the manufacturing of supercapacitors in that it provides a whole range of simple, low-cost, time-saving, versatile and environmentally-friendly manufacturing technologies for supercapacitors with new and desirable structures (micro-, asymmetric, flexible, etc.), thus unleashing the full potential of supercapacitors for future electronics. In this review, we start by introducing the structural features of printed supercapacitors, followed by a summary of materials related to printed supercapacitors, including electrodes, electrolytes, current collectors and substrates; then the approaches to improve the performance of printed supercapacitors by tuning printing processes are discussed; next a summary of the recent developments of printed supercapacitors is given in terms of specific printing methods utilized; finally, challenges and future research opportunities of this exciting research direction are presented.

12.
Small ; 15(34): e1901830, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31293068

ABSTRACT

Flexible planar micro-supercapacitors (MSCs) with unique loose and porous nanofiber-like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber-like structures, the areal capacitance of the inkjet-printed flexible planar MSCs is obviously enhanced to 46.6 mF cm-2 , which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best-performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as-fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet-printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet-printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost-effective fabrication of high-performance flexible MSCs via inkjet printing.

13.
Chemistry ; 25(15): 3909-3917, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30653783

ABSTRACT

A series of monodisperse six-armed conjugated starbursts (Tr1F, Tr2F, and Tr3F) containing a truxene core and multibranched oligofluorene bridges capped with diphenylamine (DPA) units has been designed, synthesized, and investigated as robust gain media for organic semiconductor lasers (OSLs). The influence of electron-rich DPA end groups on their optoelectronic characteristics has been discussed at length. DPA cappers effectively raise HOMO levels of the starbursts, thus enhancing the hole injection and transport ability. Solution-processed electroluminescence devices based on the resulting six-armed starbursts exhibited efficient deep-blue electroluminescence with clear reduced turn-on voltages (3.2-3.5 V). Moreover, the resulting six-armed molecules showed stabilized electroluminescence and amplified spontaneous emission with low thresholds (27.4-63.9 nJ pulse-1 ), high net gain coefficients (80.1-101.3 cm-1 ), and small optical loss (2.6-4.4 cm-1 ). Distributed feedback OSLs made from Tr3F exhibited a low lasing threshold of 0.31 kW cm-2 (at 465 nm). The results suggest that the construction of truxene-centered six-armed conjugated starbursts with the incorporation of DPA units can effectively enhance EL properties by precisely regulating the HOMO energy levels, and further optimizing their optical gain properties.

14.
Chem Rec ; 19(8): 1571-1595, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30511813

ABSTRACT

In recent years, conjugated starburst molecules, which possess a core unit with radial arms linked to the central axle, have become the research topic owing to their well-defined chemical structures, good solution processability, excellent reproducibility, and superior optoelectronic properties. The increasing interest in starburst systems is evidenced by progressively more frequent investigation on the use of these materials in optoelectronics. The ability to modify chemical structures through control over the core and arms on a molecular level can directly affect the electronic and electroluminescent characteristics of the resulting materials. In this review, we summarize and discuss main progress in our group concerning the rapidly developing field, in which strategies for the design and construction of starbursts are presented at length. Moreover, their application in organic light-emitting diodes (OLEDs) and organic semiconductor lasers (OSLs) are demonstrated as well, exploring the influence of molecular structures on the optoelectronic properties. Challenges and outlooks are also given at last.

15.
Small ; 13(38)2017 10.
Article in English | MEDLINE | ID: mdl-28748657

ABSTRACT

One dimensional (1D) silver-based nanomaterials have a great potential in various fields because of their high specific surface area, high electric conductivity, optoelectronic properties, mechanical flexibility and high electro-catalytic efficiency. In this Review, the preparations of 1D silver-based nanomaterials is classified by structure composed of simple silver nanowires/rods/belts/tubes, core-shells, and hybrids. The latest applications based on 1D silver nanomaterials and their composite materials are summarized systematically including electrochemical capacitors, lithium-ion/lithium-oxygen batteries, electrochemical sensors and electrochemical catalysis. The preparation process, tailored material properties and electrochemical applications are discussed.

16.
Chemistry ; 23(23): 5448-5458, 2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28195668

ABSTRACT

A novel series of monodisperse star-shaped ladder-type oligo(p-phenylene)s, named as TrL-n (n=1-3), have been explored. Their thermal and electrochemical properties, fluorescence transients, photoluminescence quantum yields, density functional theory calculations, electroluminescence (EL) and amplified spontaneous emission (ASE) properties have been systematically investigated to unravel the molecular design on optoelectronic properties. The resulting materials showed excellent structural perfection, free of chemical defects, and exhibited great thermal stability (Td : 404-418 °C and Tg : 147-184 °C) and amorphous glassy morphologies. Compared with their corresponding linear counterparts FL-m (m=1-3), TrL-n showed only little bathochromic shifts (5-12 nm) for the absorption maxima λmax in both solution and films. The star-shaped ladder-type compounds exhibited enhanced optical stability and suppressed low-energy emission. Their EL spectra exhibited excellent stability with increasing the driving voltage from 6 to 12 V. Moreover, superior low ASE thresholds were recorded for TrL-n compared with FL-m. Rather low ASE threshold (29 nJ per pulse or 1.60 µJ cm-2 ) was recorded for TrL-3, demonstrating their promising potential as excellent gain media. This study provides a novel design concept to develop monodisperse star-shaped ladder-type materials with excellent structural perfection, which are vital for shedding light on exploring robust organic emitters for optoelectronic applications.

17.
Org Biomol Chem ; 15(39): 8463-8470, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28956055

ABSTRACT

Stimuli-responsive circularly polarized luminescence (CPL) was successfully achieved through fine-tuning the conformation of a perylenyl dyad by using external stimuli. Monomer CPL was clearly detected from an inherent achiral monochromophore system in a simple perylene-carbazole dyad, and concentration-dependent CPL was observed from 'good solvent', giving an excimer-like CPL emission with a peak maximum at 643 nm. Moreover, the CPL bands depended on the aggregated state, which was identical to the emission changes in the THF-H2O system. It is noteworthy that the perylene-carbazole dyad emitted efficient CPL in thin films even without annealing processes. The specific perylenyl-carbazole structure plays a crucial role in CPL in response to the external environment. This novel molecular design strategy opens up a new perspective for the future development of smart CPL-active organic dyads.

18.
Chem Soc Rev ; 44(15): 5181-99, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-25951808

ABSTRACT

Paper-based supercapacitors (SCs), a novel and interesting group of flexible energy storage devices, are attracting more and more attention from both industry and academia. Cellulose papers with a unique porous bulk structure and rough and absorptive surface properties enable the construction of paper-based SCs with a reasonably good performance at a low price. The inexpensive and environmentally friendly nature of paper as well as simple fabrication techniques make paper-based SCs promising candidates for the future 'green' and 'once-use-and-throw-away' electronics. This review introduces the design, fabrication and applications of paper-based SCs, giving a comprehensive coverage of this interesting field. Challenges and future perspectives are also discussed.

19.
Phys Chem Chem Phys ; 17(14): 8860-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25742776

ABSTRACT

Low cost and high performance white polymer light-emitting diodes (PLEDs) are very important as solid-state lighting sources. In this research three commercially available phosphors were carefully chosen, bis[2-(4,6-difluorophenyl)pyridinato-N,C(2)](picolinate)iridium(III) (FIrpic), bis[2-(2-pyridinyl-N)phenyl-C](2,4-pentanedionato-O(2),O(4))iridium(III) [Ir(ppy)2(acac)], and bis(2-phenyl-benzothiazole-C(2),N)(acetylacetonate)iridium(III) [Ir(bt)2(acac)], plus a home-made red phosphor of tris[1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine]iridium(III) [Ir(MPCPPZ)3], and their photophysical and morphological properties were systematically studied as well as their applications in single-emission layer white PLEDs comprising poly(N-vinylcarbazole) as host. Additionally, the electrochemical properties and energy level alignment, possible energy transfer process, and thin-film morphology were also addressed. The binary blue/orange complementary white PLEDs exhibit stable electroluminescence spectra, wide spectrum-covering region range from 380-780 nm, and high color rendering index (CRI) over 70 with Commission Internationale de l'Eclairage coordinates x,y (CIEx,y) of (0.388, 0.440), correlated color temperature (CCT) of around 4400, plus high efficiency of 25.5 cd A(-1). The optimized red-green-blue white PLEDs showed a satisfactory CRI of around 82.4, maximum current efficiency of 20.0 cd A(-1) and external quantum efficiency (EQE) of 10.8%, corresponding to a CCT of 3700-2800, which is a warm-white hue. At last, stable and high color quality, red-green-orange-blue four component white PLEDs, with a CRI of over 82, a high efficiency of 24.0 cd A(-1), EQE of 11.5%, and high brightness of 43,569.9 cd m(-2) have been obtained.

20.
Chem Soc Rev ; 43(10): 3259-302, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24531130

ABSTRACT

The design and characterization of metal-organic complexes for optoelectronic applications is an active area of research. The metal-organic complex offers unique optical and electronic properties arising from the interplay between the inorganic metal and the organic ligand. The ability to modify chemical structure through control over metal-ligand interaction on a molecular level could directly impact the properties of the complex. When deposited in thin film form, this class of materials enable the fabrication of a wide variety of low-cost electronic and optoelectronic devices. These include light emitting diodes, solar cells, photodetectors, field-effect transistors as well as chemical and biological sensors. Here we present an overview of recent development in metal-organic complexes with controlled molecular structures and tunable properties. Advances in extending the control of molecular structures to solid materials for energy conversion and information technology applications will be highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL