Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Mol Sci ; 21(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756478

ABSTRACT

Auxins play a pivotal role in clubroot development caused by the obligate biotroph Plasmodiophora brassicae. In this study, we investigated the pattern of expression of 23 genes related to auxin biosynthesis, reception, and transport in Chinese cabbage (Brassica rapa) after inoculation with P. brassicae. The predicted proteins identified, based on the 23 selected auxin-related genes, were from protein kinase, receptor kinase, auxin responsive, auxin efflux carrier, transcriptional regulator, and the auxin-repressed protein family. These proteins differed in amino acids residue, molecular weights, isoelectric points, chromosomal location, and subcellular localization. Leaf and root tissues showed dynamic and organ-specific variation in expression of auxin-related genes. The BrGH3.3 gene, involved in auxin signaling, exhibited 84.4-fold increase in expression in root tissues compared to leaf tissues as an average of all samples. This gene accounted for 4.8-, 2.6-, and 5.1-fold higher expression at 3, 14, and 28 days post inoculation (dpi) in the inoculated root tissues compared to mock-treated roots. BrNIT1, an auxin signaling gene, and BrPIN1, an auxin transporter, were remarkably induced during both cortex infection at 14 dpi and gall formation at 28 dpi. BrDCK1, an auxin receptor, was upregulated during cortex infection at 14 dpi. The BrLAX1 gene, associated with root hair development, was induced at 1 dpi in infected roots, indicating its importance in primary infection. More interestingly, a significantly higher expression of BrARP1, an auxin-repressed gene, at both the primary and secondary phases of infection indicated a dynamic response of the host plant towards its resistance against P. brassicae. The results of this study improve our current understanding of the role of auxin-related genes in clubroot disease development.


Subject(s)
Brassica rapa/genetics , Indoleacetic Acids/metabolism , Plant Diseases/genetics , Plasmodiophorida/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassica rapa/growth & development , Brassica rapa/microbiology , Gene Expression Regulation, Plant/genetics , Membrane Transport Proteins/genetics , Plant Diseases/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plasmodiophorida/parasitology , Signal Transduction/genetics
2.
Int J Mol Sci ; 21(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486099

ABSTRACT

The obligate biotroph Plasmodiophora brassicae causes clubroot disease in oilseeds and vegetables of the Brassicaceae family, and cytokinins play a vital role in clubroot formation. In this study, we examined the expression patterns of 17 cytokinin-related genes involved in the biosynthesis, signaling, and degradation in Chinese cabbage inoculated with the Korean pathotype group 4 isolate of P. brassicae, Seosan. This isolate produced the most severe clubroot symptoms in Chinese cabbage cultivar "Bullam-3-ho" compared to three other Korean geographical isolates investigated. BrIPT1, a cytokinin biosynthesis gene, was induced on Day 1 and Day 28 in infected root tissues and the upregulation of this biosynthetic gene coincided with the higher expression of the response regulators BrRR1, on both Days and BrRR6 on Day 1 and 3. BrRR3 and 4 genes were also induced during gall enlargement on Day 35 in leaf tissues. The BrRR4 gene, which positively interact with phytochrome B, was consistently induced in leaf tissues on Day 1, 3, and 14 in the inoculated plants. The cytokinin degrading gene BrCKX3-6 were induced on Day 14, before gall initiation. BrCKX2,3,6 were induced until Day 28 and their expression was downregulated on Day 35. This insight improves our current understanding of the role of cytokinin signaling genes in clubroot disease development.


Subject(s)
Cytokinins/metabolism , Gene Expression Profiling , Plant Diseases/genetics , Plasmodiophorida/genetics , Plasmodiophorida/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica/genetics , Brassica/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Genes, Plant , Plant Growth Regulators/metabolism , Plant Leaves , Plant Roots , Republic of Korea , Signal Transduction
3.
BMC Plant Biol ; 19(1): 13, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30621588

ABSTRACT

BACKGROUND: Plasmodiophora brassicae is a soil-borne plant pathogen that causes clubroot disease, which results in crop yield loss in cultivated Brassica species. Here, we investigated whether a quantitative trait locus (QTL) in B. rapa might confer resistance to a Korean P. brassicae pathotype isolate, Seosan. We crossed resistant and susceptible parental lines and analyzed the segregation pattern in a F2 population of 348 lines. We identified and mapped a novel clubroot resistance QTL using the same mapping population that included susceptible Chinese cabbage and resistant turnip lines. Forty-five resistant and 45 susceptible F2 lines along with their parental lines were used for double digest restriction site-associated DNA sequencing (ddRAD-seq). High resolution melting (HRM)-based validation of SNP positions was conducted to confirm the novel locus. RESULTS: A 3:1 ratio was observed for resistant: susceptible genotypes, which is in accordance with Mendelian segregation. ddRAD-seq identified a new locus, CRs, on chromosome A08 that was different from the clubroot resistance (CR) locus, Crr1. HRM analysis validated SNP positions and constricted CRs region. Four out of seventeen single nucleotide polymorphisms (SNPs) positions were within a 0.8-Mb region that included three NBS-LRR candidate genes but not Crr1. CONCLUSION: The newly identified CRs locus is a novel clubroot resistance locus, as the cultivar Akimeki bears the previously known Crr1 locus but remains susceptible to the Seosan isolate. These results could be exploited to develop molecular markers to detect Seosan-resistant genotypes and develop resistant Chinese cabbage cultivars.


Subject(s)
Brassica rapa/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Brassica rapa/parasitology , Plasmodiophorida/pathogenicity
4.
Int J Mol Sci ; 18(1)2017 Jan 04.
Article in English | MEDLINE | ID: mdl-28054984

ABSTRACT

Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae). It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates), collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY). The nuclear ribosomal DNA (rDNA) sequence of P. brassicae, comprising 6932 base pairs (bp), was cloned and sequenced and found to include the small subunits (SSUs) and a large subunit (LSU), internal transcribed spacers (ITS1 and ITS2), and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs), oligonucleotide polymorphisms, and insertions/deletions (InDels). A combination of three markers was able to distinguish the geographical isolates into two groups.


Subject(s)
Brassica rapa/parasitology , DNA, Ribosomal/genetics , Plant Diseases/parasitology , Plasmodiophorida/genetics , Polymorphism, Genetic , Base Sequence , Genetic Variation , Phylogeny , Plasmodiophorida/isolation & purification , Protozoan Infections/parasitology , Republic of Korea
5.
Int J Mol Sci ; 18(7)2017 07 06.
Article in English | MEDLINE | ID: mdl-28684669

ABSTRACT

The authors of Laila et al. [1] would like thank to the readers (A. Schwelm and S. Neuhauser) for submitting a letter requesting the authors to correct ribosomal DNA (rDNA) sequences of 11 Korean Plasmodiophora bassicae isolates at the 3'-end.[...].


Subject(s)
Eukaryota/genetics , Plasmodiophorida/genetics , DNA, Ribosomal/genetics , Plant Diseases , Polymorphism, Genetic
6.
Molecules ; 21(6)2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27322230

ABSTRACT

Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate accumulation and related gene expression level was explored by principal component analysis (PCA). The genotype-dependent variation in the relative expression level of different aliphatic and indolic glucosinolate biosynthesis genes is the novel result of this study. A total of eight different types of glucosinolates, including five aliphatic and three indolic glucosinolates, was detected in four cabbage lines. Three inbred lines BN3383, BN4059 and BN4072 had no glucoraphanin, sinigrin and gluconapin detected, but the inbred line BN3273 had these three aliphatic glucosinolate compounds. PCA revealed that a higher expression level of ST5b genes and lower expression of GSL-OH was associated with the accumulation of these three aliphatic glucosinolate compounds. PCA further revealed that comparatively higher accumulation of neoglucobrassicin in the inbred line, BN4072, was associated with a high level of expression of MYB34 (Bol017062) and CYP81F1 genes. The Dof1 and IQD1 genes probably trans-activated the genes related to biosynthesis of glucoerucin and methoxyglucobrassicin for their comparatively higher accumulation in the BN4059 and BN4072 lines compared to the other two lines, BN3273 and BN3383. A comparatively higher progoitrin level in BN3273 was probably associated with the higher expression level of the GSL-OH gene. The cabbage inbred line BN3383 accounted for the significantly higher relative expression level for the 12 genes out of 48, but this line had comparatively lower total glucosinolates detected compared to the other three cabbage lines. The reason for the genotypic variation in gene expression and glucosinolate accumulation is a subject of further investigation.


Subject(s)
Brassica/genetics , Gene Expression Regulation, Plant/genetics , Glucosinolates/biosynthesis , Plant Proteins/biosynthesis , Arabidopsis/genetics , Genotype , Glucose/analogs & derivatives , Glucose/biosynthesis , Glucose/genetics , Glucosinolates/blood , Glucosinolates/genetics , Imidoesters , Indoles , Oximes , Plant Proteins/genetics , Sulfoxides
7.
Front Plant Sci ; 11: 1134, 2020.
Article in English | MEDLINE | ID: mdl-32849695

ABSTRACT

The fungal pathogen, Leptosphaeria maculans causes a severe and economically important disease to Brassica crops globally, well-known as blackleg. Besides, the anti-oxidative defense response of glucosinolates to fungal pathogens is widely established. Despite notable importance of glucosinolates in blackleg disease resistance the association of glucosinolate pathway genes in glucosinolate mediated defense response after L. maculans infection remains incompletely understood. The current study was designed to identify glucosinolate-biosynthesis specific genes among the eight selected candidates induced by L. maculans and associated alterations in glucosinolate profiles to explore their roles in blackleg resistance at the seedling stage of cabbage plants. The defense responses of four cabbage inbred lines, two resistant and two susceptible, were investigated using two L. maculans isolates, 03-02s and 00-100s. Pathogen-induced glucosinolate accumulation dynamically changed from two days after inoculation to four days after inoculation. In general, glucosinolate biosynthetic genes were induced at 24 h after inoculation and glucosinolate accumulation enhanced at two days after inoculation. An increase in either aliphatic (GIB, GRA) or indolic (GBS and MGBS) glucosinolates was associated with seedling resistance of cabbage. Pearson correlation showed the enhanced accumulation of MGBS, GBS, GIB, GIV and GRA after the inoculation of fungal isolates was associated with expression of specific genes. Principal component analysis separated two resistant cabbage lines-BN4098 and BN4303 from two susceptible cabbage lines-BN4059 and BN4072 for variable coefficients of disease scores, glucosinolate accumulation and expression levels of genes. Enhanced MGBS content against both fungal isolates, contributing to seedling resistance in two interactions-BN4098 × 03-02s and BN4303 × 00-100s and enhanced GBS content only in BN4098 × 03-02s interaction. Aliphatic GRA took part in resistance of BN4098 × 00-100s interaction whereas aliphatic GIB took part is resistance of BN4098 × 03-02s interaction. Aliphatic GIV accumulated upon BN4098 × 03-02s interaction but GSL-OH-Bol033373 and CYP81F2-Bol026044 showed enhanced expression in BN4303 × 03-02s interaction. The association between the selected candidate genes, corresponding glucosinolates, and seedling resistance broaden the horizon of glucosinolate conciliated defense against L. maculans in cabbage seedlings.

8.
Plant Pathol J ; 34(6): 506-513, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30588224

ABSTRACT

Clubroot is one of the most economically important diseases of the Brassicaceae family. Clubroot disease is caused by the obligate parasite Plasmodiophora brassicae, which is difficult to study because it is non-culturable in the laboratory and its races are genetically variable worldwide. In Korea, there are at least five races that belongs to four pathotype groups. A recent study conducted in Korea attempted to develop molecular markers based on ribosomal DNA polymorphism to detect P. brassicae isolates, but none of those markers was either race-specific or pathotype-specific. Our current study aimed to develop race- and isolate-specific markers by exploiting genomic sequence variations. A total of 119 markers were developed based on unique variation exists in genomic sequences of each of the races. Only 12 markers were able to detect P. brassicae strains of each isolate or race. Ycheon14 markers was specific to isolates of race 2, Yeoncheon and Hoengseong. Ycheon9 and Ycheon10 markers were specific to Yeoncheon isolate (race 2, pathotype 3), ZJ1-3, ZJ1-4 and ZJ1-5 markers were specific to Haenam2 (race 4) isolate, ZJ1-35, ZJ1-40, ZJ1-41 and ZJ1-49 markers were specific to Hoengseong isolate and ZJ1-56 and ZJ1-64 markers were specific to Pyeongchang isolate (race 4, pathotype 3). The PCR-based sequence characterized amplified region (SCAR) markers developed in this study are able to detect five Korean isolates of P. brassicae. These markers can be utilized in identifying four Korean P. brassicae isolates from different regions. Additional effort is required to develop race- and isolate-specific markers for the remaining Korean isolates.

9.
Front Plant Sci ; 8: 1769, 2017.
Article in English | MEDLINE | ID: mdl-29075281

ABSTRACT

Blackleg, a fungal disease caused by Leptosphaeria maculans, is one of the most devastating diseases of Brassica crops worldwide. Despite notable progress elucidating the roles of glucosinolates in pathogen defense, the complex interaction between B. oleracea (cabbage) and L. maculans infection that leads to the selective induction of genes involved in glucosinolate production and subsequent modulation of glucosinolate profiles remains to be fully understood. The current study was designed to identify glucosinolate-biosynthesis genes induced by L. maculans and any associated alterations in glucosinolate profiles to explore their roles in blackleg resistance in 3-month-old cabbage plants. The defense responses of four cabbage lines, two resistant and two susceptible, were investigated using two L. maculans isolates, 03-02 s and 00-100 s. A simultaneous increase in the aliphatic glucosinolates glucoiberverin (GIV) and glucoerucin (GER) and the indolic glucosinolates glucobrassicin (GBS) and neoglucobrassicin (NGBS) was associated with complete resistance. An increase in either aliphatic (GIV) or indolic (GBS and MGBS) glucosinolates was associated with moderate resistance. Indolic glucobrassicin (GBS) and neoglucobrassicin (NGBS) were increased in both resistant and susceptible interactions. Pearson correlation showed positive association between GER content with GSL-OH (Bol033373) expression. Expressions of MYB34 (Bol007760), ST5a (Bol026200), and CYP81F2 (Bol026044) were positively correlated with the contents of both GBS and MGBS. Our results confirm that L. maculans infection induces glucosinolate-biosynthesis genes in cabbage, with concomitant changes in individual glucosinolate contents. In resistant lines, both aliphatic and indolic glucosinolates are associated with resistance, with aliphatic GIV and GER and indolic MGBS glucosinolates particularly important. The association between the genes, the corresponding glucosinolates, and plant resistance broaden our molecular understanding of glucosinolate mediated defense against L. maculans in cabbage.

10.
Front Plant Sci ; 7: 1972, 2016.
Article in English | MEDLINE | ID: mdl-28119701

ABSTRACT

Cuticular waxes act as a protective barrier against environmental stresses. In the present study, we investigated developmental and genotypic variation in wax formation of cabbage lines, with a view to understand the related morphology, genetics and biochemistry. Our studies revealed that the relative expression levels of wax biosynthetic genes in the first-formed leaf of the highest-wax line remained constantly higher but were decreased in other genotypes with leaf aging. Similarly, the expression of most of the tested genes exhibited decrease from the inner leaves to the outer leaves of 5-month-old cabbage heads in the low-wax lines in contrast to the highest-wax line. In 10-week-old plants, expression of wax biosynthetic genes followed a quadratic function and was generally increased in the early developing leaves but substantially decreased at the older leaves. The waxy compounds in all cabbage lines were predominately C29-alkane, -secondary alcohol, and -ketone. Its deposition was increased with leaf age in 5-month-old plants. The high-wax lines had dense, prominent and larger crystals on the leaf surface compared to low-wax lines under scanning electron microscopy. Principal component analysis revealed that the higher expression of LTP2 genes in the lowest-wax line and the higher expression of CER3 gene in the highest-wax line were probably associated with the comparatively lower and higher wax content in those two lines, respectively. This study furthers our understanding of the relationships between the expression of wax biosynthetic genes and the wax deposition in cabbage lines. Highlight: In cabbage, expression of wax-biosynthetic genes was generally decreased in older and senescing leaves, while wax deposition was increased with leaf aging, and C29-hydrocarbon was predominant in the wax crystals.

SELECTION OF CITATIONS
SEARCH DETAIL