Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
FASEB J ; 38(2): e23429, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38258931

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial inĀ vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects inĀ vitro and inĀ vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.


Subject(s)
Machado-Joseph Disease , Neuroblastoma , Neurodegenerative Diseases , Humans , Animals , Butyric Acid/pharmacology , Ataxin-3/genetics , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Zebrafish , AMP-Activated Protein Kinases , Protein Aggregates , Proteomics , Autophagy , Animals, Genetically Modified , Cyclic AMP-Dependent Protein Kinases
2.
Biochem J ; 481(6): 461-480, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38497605

ABSTRACT

Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.


Subject(s)
Machado-Joseph Disease , Neoplasms , Neurodegenerative Diseases , Humans , Ataxin-3/genetics , Ataxin-3/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Neurodegenerative Diseases/genetics
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34785590

ABSTRACT

Aberrant O-GlcNAcylation, a protein posttranslational modification defined by the O-linked attachment of the monosaccharide N-acetylglucosamine (O-GlcNAc), has been implicated in neurodegenerative diseases. However, although many neuronal proteins are substrates for O-GlcNAcylation, this process has not been extensively investigated in polyglutamine disorders. We aimed to evaluate the enzyme O-GlcNAc transferase (OGT), which attaches O-GlcNAc to target proteins, in Machado-Joseph disease (MJD). MJD is a neurodegenerative condition characterized by ataxia and caused by the expansion of a polyglutamine stretch within the deubiquitinase ataxin-3, which then present increased propensity to aggregate. By analyzing MJD cell and animal models, we provide evidence that OGT is dysregulated in MJD, therefore compromising the O-GlcNAc cycle. Moreover, we demonstrate that wild-type ataxin-3 modulates OGT protein levels in a proteasome-dependent manner, and we present OGT as a substrate for ataxin-3. Targeting OGT levels and activity reduced ataxin-3 aggregates, improved protein clearance and cell viability, and alleviated motor impairment reminiscent of ataxia of MJD patients in zebrafish model of the disease. Taken together, our results point to a direct interaction between OGT and ataxin-3 in health and disease and propose the O-GlcNAc cycle as a promising target for the development of therapeutics in the yet incurable MJD.


Subject(s)
Ataxin-3/metabolism , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , N-Acetylglucosaminyltransferases/metabolism , Animals , Ataxin-3/genetics , Disease Models, Animal , HEK293 Cells , Humans , Peptides , Proteasome Endopeptidase Complex , Zebrafish/metabolism
4.
Neurobiol Dis ; 179: 106051, 2023 04.
Article in English | MEDLINE | ID: mdl-36822548

ABSTRACT

Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15Ā weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7Ā weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.


Subject(s)
Gastrointestinal Microbiome , Machado-Joseph Disease , Spinocerebellar Ataxias , Male , Humans , Female , Mice , Animals , Machado-Joseph Disease/genetics , Machado-Joseph Disease/pathology , Mice, Transgenic , Phenotype , Ataxin-3/genetics
5.
Hum Mol Genet ; 29(14): 2379-2394, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32588886

ABSTRACT

Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.


Subject(s)
Aging/genetics , Alzheimer Disease/genetics , Brain/metabolism , Presenilin-1/genetics , Zebrafish Proteins/genetics , Aging/pathology , Alleles , Alzheimer Disease/pathology , Animals , Brain/pathology , Cell Hypoxia/genetics , Disease Models, Animal , Genotype , Humans , Mutation/genetics , Presenilin-2/genetics , Zebrafish/genetics
6.
Hum Mol Genet ; 26(14): 2616-2626, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28444311

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cyclins/genetics , Frontotemporal Dementia/genetics , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Axons/pathology , Caspase 3/metabolism , Cell Death/genetics , Cyclins/biosynthesis , Cyclins/metabolism , Disease Models, Animal , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation, Missense , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zebrafish
7.
J Neurosci ; 37(32): 7782-7794, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28687604

ABSTRACT

The neurodegenerative disease Machado-Joseph disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord, disrupting control of the movement of muscles. We have successfully established the first transgenic zebrafish (Danio rerio) model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, wild-type) or 84Q (MJD-causing) within neurons. Phenotypic characterization of the zebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and motor impairment. Ataxin-3-84Q zebrafish swim shorter distances than ataxin-3-23Q zebrafish as early as 6 days old, even if expression of the human ataxin-3 protein is limited to motor neurons. This swimming phenotype provides a valuable readout for drug treatment studies. Treating the EGFP-ataxin-3-84Q zebrafish with the calpain inhibitor compound calpeptin decreased levels of ataxin-3 cleavage fragments, but also removed all human ataxin-3 protein (confirmed by ELISA) and prevented the early MJD zebrafish motor phenotype. We identified that this clearance of ataxin-3 protein by calpeptin treatment resulted from an increase in autophagic flux (indicated by decreased p62 levels and increased LC3II). Cotreatment with the autophagy inhibitor chloroquine blocked the decrease in human ataxin-3 levels and the improved movement produced by calpeptin treatment. This study demonstrates that this first transgenic zebrafish model of MJD is a valuable tool for testing potential treatments for MJD. Calpeptin treatment is protective in this model of MJD and removal of human ataxin-3 through macro-autophagy plays an important role in this beneficial effect.SIGNIFICANCE STATEMENT We have established the first transgenic zebrafish model of the neurodegenerative disease MJD, and identified relevant disease phenotypes, including impaired movement from an early age, which can be used in rapid drug testing studies. We have found that treating the MJD zebrafish with the calpain inhibitor compound calpeptin produces complete removal of human ataxin-3 protein, due to induction of the autophagy quality control pathway. This improves the movement of the MJD zebrafish. Artificially blocking the autophagy pathway prevents the removal of human ataxin-3 and improved movement produced by calpeptin treatment. These findings indicate that induction of autophagy, and removal of ataxin-3 protein, plays an important role in the protective effects of calpain inhibition for the treatment of MJD.


Subject(s)
Ataxin-3/metabolism , Autophagy/physiology , Calpain/metabolism , Disease Models, Animal , Glycoproteins/pharmacology , Machado-Joseph Disease/metabolism , Repressor Proteins/metabolism , Animals , Animals, Genetically Modified , Ataxin-3/genetics , Autophagy/drug effects , Calpain/antagonists & inhibitors , Calpain/genetics , Female , Glycoproteins/therapeutic use , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/prevention & control , Male , Repressor Proteins/genetics , Zebrafish
8.
Hum Mol Genet ; 25(9): 1728-38, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26908606

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism.


Subject(s)
Embryo, Nonmammalian/cytology , MicroRNAs/genetics , Motor Neurons/pathology , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Survival of Motor Neuron 1 Protein/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Humans , Motor Neurons/metabolism , Muscle, Skeletal/metabolism , Survival of Motor Neuron 1 Protein/antagonists & inhibitors , Survival of Motor Neuron 1 Protein/genetics , Zebrafish
10.
Neurochem Int ; 176: 105745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641025

ABSTRACT

Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.


Subject(s)
Butyrates , Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Butyrates/therapeutic use , Butyrates/pharmacology , Butyrates/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Probiotics/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL