Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Ann Hum Genet ; 72(Pt 3): 337-48, 2008 May.
Article in English | MEDLINE | ID: mdl-18294359

ABSTRACT

In this study, the population history of the Baltic Sea region, known to be affected by a variety of migrations and genetic barriers, was analyzed using both mitochondrial DNA and Y-chromosomal data. Over 1200 samples from Finland, Sweden, Karelia, Estonia, Setoland, Latvia and Lithuania were genotyped for 18 Y-chromosomal biallelic polymorphisms and 9 STRs, in addition to analyzing 17 coding region polymorphisms and the HVS1 region from the mtDNA. It was shown that the populations surrounding the Baltic Sea are genetically similar, which suggests that it has been an important route not only for cultural transmission but also for population migration. However, many of the migrations affecting the area from Central Europe, the Volga-Ural region and from Slavic populations have had a quantitatively different impact on the populations, and, furthermore, the effects of genetic drift have increased the differences between populations especially in the north. The possible explanations for the high frequencies of several haplogroups with an origin in the Iberian refugia (H1, U5b, I1a) are also discussed.


Subject(s)
Emigration and Immigration , Baltic States , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Geography , Haplotypes/genetics , Humans , Linguistics , Oceans and Seas , Phylogeny
2.
Hereditas ; 132(1): 35-42, 2000.
Article in English | MEDLINE | ID: mdl-10857257

ABSTRACT

Mitochondrial DNA sequence variation as well as restriction site polymorphisms were examined in 437 individuals from four Finno-Ugric-speaking populations. These included the Hungarians (Budapest region and the Csángós from Hungary and Romania), the Finns and two Saami groups from northeastern Finland (Inari Saami and Skolt Saami), and the Erzas from central Russia. The mtDNA data obtained in this study were combined with our previous data on Y chromosomal variation for eight different loci in these populations. The genetic variation observed among the Hungarians resembled closely that found in other European populations. The Hungarians could not be distinguished from the neighboring populations (e.g., the Austrians) any more than from their Finno-Ugric linguistic relatives.


Subject(s)
DNA, Mitochondrial/genetics , Polymorphism, Genetic , Y Chromosome/genetics , Evolution, Molecular , Finland , Genetic Variation , Haplotypes , Humans , Hungary , Male , Russia , Sequence Analysis, DNA
3.
Am J Hum Genet ; 69(4): 844-52, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11517423

ABSTRACT

Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T-->C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed "pre*V," since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory.


Subject(s)
Cold Climate , DNA, Mitochondrial/genetics , Emigration and Immigration , Gene Frequency/genetics , Ice , Phylogeny , Africa, Northern , Asia, Western , Europe , Genetic Markers/genetics , Genetic Testing , Haplotypes/genetics , Humans , Mutation/genetics , Polymorphism, Restriction Fragment Length , Sample Size , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL