Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Geochem Health ; 45(11): 7759-7773, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37428427

ABSTRACT

Zahedan City is situated in the Sistan basin, a highly active dust source region that poses significant risks to human and ecological health due to potentially toxic elements (PTEs) present in atmospheric dust. In this study, we investigated the concentration, sources, and human health risk assessment of PTEs in 88 monthly atmospheric dust samples collected between December 2020 and October 2021 using inductively coupled plasma mass spectrometry. The results showed that the concentrations of PTEs in atmospheric dust followed the descending order of Mn > Zn > Ba > Sr > Cr > V > Ni > Cu > Pb > Co > As > Mo > Cd. The calculated enrichment factors revealed significant enrichment for As > Zn, moderate enrichment Pb > Ni, deficiency to minimal enrichment for Cr > Mn > Fe > Sr > Cd > V > Cu > Ba > Co, and no enrichment for Mo. Arsenic was found to be the major contributor to the potential ecological risk index, accounting for 55% of the total risk. The widespread utilization of arsenic-based pesticides in the surrounding agricultural lands may be a significant contributor to the severe arsenic pollution in the region. The winter season exhibited the highest monthly mean concentrations of Zn and Pb possibly due to temperature inversions trapping local anthropogenic pollutants near the Earth's surface. Cluster analysis revealed a strong correlation between Ni-Cr-Fe-V-Mn-Al, which shows mainly the geogenic source for these elements. The predominant exposure route for non-carcinogenic risk to humans was ingestion. The hazard index (HI) values for the heavy metals studied decreased in the following order: Cr > As > Pb > Ni > Zn > Cu > Cd, for both children and adults. The HI values indicated that there was no possible non-carcinogenic risk associated with exposure to these heavy metals in Zahedan's atmospheric dust. The result of the inhalation cancer risk assessment suggested that while the potential risks of cancer for As, Cd, Cr, and Ni were below the safe level, the levels of Chromium were close enough to the threshold to warrant further investigation and monitoring.


Subject(s)
Arsenic , Metals, Heavy , Neoplasms , Adult , Child , Humans , Dust/analysis , Environmental Monitoring , Arsenic/analysis , Iran , Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , China
2.
Environ Monit Assess ; 188(4): 233, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27000318

ABSTRACT

This paper presents the results of an assessment about interaction between Urmia Lake (UL) and coastal groundwater in the Urmia aquifer (UA). This aquifer is the most significant contributor to the freshwater supply of the coastal areas. The use of hydrochemical facies can be very useful to identify the saltwater encroachment or freshening phases in the coastal aquifers. In this study, the analysis of salinization/freshening processes was carried out through the saturation index (SI), ionic deltas (Δ), binary diagrams, and hydrochemical facies evolution (HFE) diagram. Based on the Gibbs plot, the behavior of the major ions showed that the changes in the chemical composition of the groundwater are mainly controlled by the water-soil/rock interaction zone and few samples are relatively controlled by evaporation. A possible explanation for this phenomenon is that the deposited chloride and sulfate particles can form the minor salinity source in some coastal areas when washed down by precipitation. The SI calculations showed that all groundwater samples, collected in these periods, show negative saturation indices, which indicate undersaturation with respect to anhydrite, gypsum, and halite. In addition, except in a few cases, all other samples showed the undersaturation with respect to the carbonate minerals such as aragonite, calcite, and dolomite. Therefore, these minerals are susceptible to dissolution. In the dry season, the SI calculations showed more positive values with respect to dolomite, especially in the northern part of UA, which indicated a higher potential for precipitation and deposition of dolomite. The percentage of saltwater in the groundwater samples of Urmia plain was very low, ranging between 0.001 and 0.79 % in the wet season and 0.0004 and 0.81 % in the dry season. The results of HFE diagram, which was taken to find whether the aquifer was in the saltwater encroachment phase or in the freshening phase, indicated that except for a few wells near the coast, there is very little hydraulic interaction between UA and UL. In this coastal area, most of the samples that were collected repeatedly in both wet and dry seasons showed the same hydrochemical facies, which suggested that the seasonal groundwater fluctuations cannot significantly change the chemical composition of groundwater.


Subject(s)
Groundwater/chemistry , Salinity , Water Pollutants/analysis , Chlorides/analysis , Environmental Monitoring/methods , Iran , Sulfates/analysis , Water Supply/statistics & numerical data
3.
Mar Pollut Bull ; 188: 114553, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701976

ABSTRACT

During the last two decades, the number of tropical cyclone (TC) events in the Arabian Sea has increased dramatically. These events have led to severe human and economic damage in Oman, Iran and Pakistan. Within this context, Gonu, Phet and Shaheen were the Arabian Sea's most destructive TCs on record, leading to a total of 6.07 billion USD in damages and 159 fatalities. Previous studies have mainly focused on atmospheric, sea surface temperature (SST) and anthropogenic impacts of TC generation and intensification. By contrast, oceanographic currents, Persian Gulf water outflow and the role of ocean-atmospheric interactions on the distribution of outflow water into the Arabian Sea and their impacts on TC intensification, are poorly understood. In order to address this issue, we use historical TC records, satellite data, atmospheric and reanalyzed oceanographic data to shed new light on the relationship between large-scale atmospheric forcing and ocean currents on TC intensification in the Arabian Sea. The results demonstrate that pre-monsoon TCs mainly occurred during co-existing La Niña, cold Indian Ocean Basin Model (IOBM) and anomalous northern hemisphere circulations over the Persian Gulf. By contrast, post-monsoon TCs were generally generated during warming acceleration period. Poleward movement of the monsoon belt provided the required humidity and energy for TC generation and increased upwelling events. Water salinity and temperature have increased in the north and northwestern parts of the Arabian Sea following rising upwelling events and a decrease in Persian Gulf outflow water depth. Rapid TC intensification has increased noticeably since 2007 and >72 % of cyclones have reached category 3 or more. We find that the rate of SST rise in the Arabian Sea is higher than the other parts of the northern Indian Ocean since 1998. SST and salinity in the Arabian Sea have been controlled by Persian Gulf outflow water and oceanographic currents. TC intensity is controlled by warm and saline (>36.6 PSU) water distribution patterns, mediated by eddy and jet currents. Rapid intensification of pre-monsoon TCs occurred by tracking to the north and northwest, with most landfalls occurring during this period. Post-monsoon TCs generally affect the center and the southwest of the Arabian Sea. The risk of intensive TCs manifests an increasing trend since 2007, therefore education programs via international platforms such as the International Ocean Institute (IOI) and UNESCO are required for the countries most at risk.


Subject(s)
Cyclonic Storms , Humans , Indian Ocean , Water , Temperature , Atmosphere
4.
Environ Sci Pollut Res Int ; 23(16): 16738-60, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27184149

ABSTRACT

Measurements of major ions, trace elements, water-stable isotopes, and geophysical soundings were made to examine the interaction between Urmia Aquifer (UA) and Urmia Lake (UL), northwest Iran. The poor correlation between sampling depth and Cl(-) concentrations indicated that the position of freshwater-saltwater interface is not uniformly distributed in the study area, and this was attributed to aquifer heterogeneities. The targeted coastal wells showed B/Cl and Br/Cl molar ratios in the range of 0.0022-2.43 and 0.00032-0.28, respectively. The base-exchange index (BEI) and saturation index (SI) calculations showed that the salinization process followed by cation-exchange reactions mainly controls changes in the chemical composition of groundwater. All groundwater samples are depleted with respect to δ(18)O (-11.71 to -9.4 ‰) and δD (-66.26 to -48.41 ‰). The δ(18)O and δD isotope ratios for surface and groundwater had a similar range and showed high deuterium excess (d-excess) (21.11 to 31.16 ‰). The high d-excess in water samples is because of incoming vapors from the UL mixed with an evaporated moisture flux from the Urmia mainland and incoming vapors from the west (i.e., Mediterranean Sea). Some saline samples with low B/Cl and Br/Cl ratios had depleted δ(18)O and δD. In this case, due to freshwater flushing, the drilled wells in the coastal playas and salty sediments could have more depleted isotopes, more Cl(-), and consequently smaller B/Cl and Br/Cl ratios. Moreover, the results of hydrochemical facies evolution (HFE) diagram showed that because of the existence fine-grained sediments saturated with high density saltwater in the coastal areas that act as a natural barrier, increasing the groundwater exploitation leads to movement of freshwaters from recharge zones in the western mountains not saltwater from UL. The highly permeable sediments at the junction of the rivers to the lake are characterized by low hydraulic gradient and high hydraulic conductivity. These properties enhance the salinization of groundwater observed in the study area. The main factors influencing the salinity are base-exchange reactions, invasion of highly diluted saltwater, dissolution of salty pans, and water chemistry evolution along flow paths.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Lakes/chemistry , Salinity , Water Pollutants/analysis , Iran , Isotopes , Mediterranean Sea , Rivers , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL